Difference between revisions of "1978 AHSME Problems/Problem 1"
(Created page with "== Problem 1 == If <math>1-\frac{4}{x}+\frac{4}{x^2}=0</math>, then <math>\frac{2}{x}</math> equals <math>\textbf{(A) }-1\qquad \textbf{(B) }1\qquad \textbf{(C) }2\qquad \te...") |
Coolmath34 (talk | contribs) |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 8: | Line 8: | ||
\textbf{(D) }-1\text{ or }2\qquad | \textbf{(D) }-1\text{ or }2\qquad | ||
\textbf{(E) }-1\text{ or }-2 </math> | \textbf{(E) }-1\text{ or }-2 </math> | ||
− | |||
− | |||
==Solution 1== | ==Solution 1== | ||
By guessing and checking, 2 works. | By guessing and checking, 2 works. | ||
− | <math>\frac{2}{x} = </math>\boxed{\textbf{( | + | <math>\frac{2}{x} = \boxed{\textbf{(B) }1}</math> |
+ | ~awin | ||
+ | |||
+ | ==Solution 2== | ||
+ | Multiplying each side by <math>x^2</math>, we get <math>x^2-4x+4 = 0</math>. Factoring, we get <math>(x-2)(x-2) = 0</math>. Therefore, <math>x = 2</math>. | ||
+ | <math>\frac{2}{x} = \boxed{\textbf{(B) }1}</math> | ||
+ | ~awin | ||
+ | |||
+ | ==Solution 3== | ||
+ | Directly factoring, we get <math>(1-\frac{2}{x})^2 = 0</math>. Thus <math>\frac{2}{x}</math> must equal <math>\boxed{\textbf{(B) }1}</math> | ||
+ | |||
+ | ==See Also== | ||
+ | {{AHSME box|year=1978|num-b=0|num-a=2}} | ||
+ | {{MAA Notice}} |
Latest revision as of 10:59, 13 February 2021
Problem 1
If , then equals
Solution 1
By guessing and checking, 2 works. ~awin
Solution 2
Multiplying each side by , we get . Factoring, we get . Therefore, . ~awin
Solution 3
Directly factoring, we get . Thus must equal
See Also
1978 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 0 |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.