GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2004 AMC 10B Problems"

m
m (added back p20 which was missing)
 
(9 intermediate revisions by 7 users not shown)
Line 1: Line 1:
[[2004 AMC 10B Problems/Problem 1|Solution]]
+
{{AMC10 Problems|year=2004|ab=B}}
  
 
==Problem 1==
 
==Problem 1==
Line 77: Line 77:
 
A grocer makes a display of cans in which the top row has one can and each lower row has two more cans than the row above it. If the display contains <math>100</math> cans, how many rows does it contain?
 
A grocer makes a display of cans in which the top row has one can and each lower row has two more cans than the row above it. If the display contains <math>100</math> cans, how many rows does it contain?
  
<math> \mathrm{(A) \ } 5 \qquad \mathrm{(B) \ } 8 \qquad \mathrm{(C) \ } 9 \qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 411 </math>
+
<math> \mathrm{(A) \ } 5 \qquad \mathrm{(B) \ } 8 \qquad \mathrm{(C) \ } 9 \qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 11 </math>
  
 
[[2004 AMC 10B Problems/Problem 10|Solution]]
 
[[2004 AMC 10B Problems/Problem 10|Solution]]
Line 163: Line 163:
  
 
In the right triangle <math>\triangle ACE</math>, we have <math>AC=12</math>, <math>CE=16</math>, and <math>EA=20</math>. Points <math>B</math>, <math>D</math>, and <math>F</math> are located on <math>AC</math>, <math>CE</math>, and <math>EA</math>, respectively, so that <math>AB=3</math>, <math>CD=4</math>, and <math>EF=5</math>. What is the ratio of the area of <math>\triangle DBF</math> to that of <math>\triangle ACE</math>?
 
In the right triangle <math>\triangle ACE</math>, we have <math>AC=12</math>, <math>CE=16</math>, and <math>EA=20</math>. Points <math>B</math>, <math>D</math>, and <math>F</math> are located on <math>AC</math>, <math>CE</math>, and <math>EA</math>, respectively, so that <math>AB=3</math>, <math>CD=4</math>, and <math>EF=5</math>. What is the ratio of the area of <math>\triangle DBF</math> to that of <math>\triangle ACE</math>?
 
<math> \mathrm{(A) \ } \frac{1}{4} \qquad \mathrm{(B) \ } \frac{9}{25} \qquad \mathrm{(C) \ } \frac{3}{8} \qquad \mathrm{(D) \ } \frac{11}{25} \qquad \mathrm{(E) \ } \frac{7}{16} </math>
 
  
 
<asy>
 
<asy>
Line 188: Line 186:
 
label("$15$",F--A,NE);
 
label("$15$",F--A,NE);
 
</asy>
 
</asy>
 +
 +
<math> \mathrm{(A) \ } \frac{1}{4} \qquad \mathrm{(B) \ } \frac{9}{25} \qquad \mathrm{(C) \ } \frac{3}{8} \qquad \mathrm{(D) \ } \frac{11}{25} \qquad \mathrm{(E) \ } \frac{7}{16} </math>
  
 
[[2004 AMC 10B Problems/Problem 18|Solution]]
 
[[2004 AMC 10B Problems/Problem 18|Solution]]
Line 202: Line 202:
 
== Problem 20 ==
 
== Problem 20 ==
  
In <math>\triangle ABC</math> points <math>D</math> and <math>E</math> lie on <math>BC</math> and <math>AC</math>, respectively. If <math>AD</math> and <math>BE</math> intersect at <math>T</math> so that <math>AT/DT=3</math> and <math>BT/ET=4</math>, what is <math>CD/BD</math>?
+
In <math>\triangle ABC</math> points <math>D</math> and <math>E</math> lie on <math>BC</math> and <math>AC</math>, respectively. If <math>AD</math> and <math>BE</math> intersect at <math>T</math> so that <math>\frac{AT}{DT}=3</math> and <math>\frac{BT}{ET}=4</math>, what is <math>\frac{CD}{BD}</math>?
  
 +
<asy>
 +
unitsize(1.5 cm);
  
<math> \mathrm{(A) \ } \frac{1}{8} \qquad \mathrm{(B) \ } \frac{2}{9} \qquad \mathrm{(C) \ } \frac{3}{10} \qquad \mathrm{(D) \ } \frac{4}{11} \qquad \mathrm{(E) \ } \frac{5}{12} </math>
+
pair A, B, C, D, E, F, T;
  
 +
A = (0,0);
 +
B = (3,3);
 +
C = (4.5,0);
 +
D = (2*C + B)/3;
 +
E = (5*C + 2*A)/7;
 +
T = extension(A,D,B,E);
 +
F = extension(D, D + A - C, B, E);
  
<asy>
 
unitsize(1cm);
 
defaultpen(0.8);
 
pair A=(0,0), B=5*dir(60), C=5*(1,0), D=B + (11/15)*(C-B), E = A + (11/16)*(C-A);
 
 
draw(A--B--C--cycle);
 
draw(A--B--C--cycle);
 
draw(A--D);
 
draw(A--D);
 
draw(B--E);
 
draw(B--E);
pair T=intersectionpoint(A--D,B--E);
+
 
label("$A$",A,SW);
+
 
label("$B$",B,N);
+
label("$A$", A, SW);
label("$C$",C,SE);
+
label("$B$", B, N);
label("$D$",D,NE);
+
label("$C$", C, SE);
label("$E$",E,S);
+
label("$D$", D, NE);
label("$T$",T,2*WNW);
+
label("$E$", E, S);
 +
label("$T$", T, SE);
 +
 
 
</asy>
 
</asy>
  
 +
<math> \mathrm{(A) \ } \frac{1}{8} \qquad \mathrm{(B) \ } \frac{2}{9} \qquad \mathrm{(C) \ } \frac{3}{10} \qquad \mathrm{(D) \ } \frac{4}{11} \qquad \mathrm{(E) \ } \frac{5}{12} </math>
  
 
[[2004 AMC 10B Problems/Problem 20|Solution]]
 
[[2004 AMC 10B Problems/Problem 20|Solution]]
Line 237: Line 245:
 
== Problem 22 ==
 
== Problem 22 ==
  
A triangle with sides of <math>5, 12,</math> and <math>13</math> has both an inscribed and a circumscribed circle. What is the distance between the centers of those circles?
+
A triangle with sides of length <math>5, 12,</math> and <math>13</math> has both an inscribed and a circumscribed circle. What is the distance between the centers of those circles?
  
 
<math> \mathrm{(A) \ } \frac{3\sqrt{5}}{2} \qquad \mathrm{(B) \ } \frac{7}{2} \qquad \mathrm{(C) \ } \sqrt{15} \qquad \mathrm{(D) \ } \frac{\sqrt{65}}{2} \qquad \mathrm{(E) \ } \frac{9}{2} </math>
 
<math> \mathrm{(A) \ } \frac{3\sqrt{5}}{2} \qquad \mathrm{(B) \ } \frac{7}{2} \qquad \mathrm{(C) \ } \sqrt{15} \qquad \mathrm{(D) \ } \frac{\sqrt{65}}{2} \qquad \mathrm{(E) \ } \frac{9}{2} </math>

Latest revision as of 14:29, 9 June 2024

2004 AMC 10B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Each row of the Misty Moon Amphitheater has $33$ seats. Rows $12$ through $22$ are reserved for a youth club. How many seats are reserved for this club?

$\mathrm{(A) \ } 297 \qquad \mathrm{(B) \ } 330\qquad \mathrm{(C) \ } 363\qquad \mathrm{(D) \ } 396\qquad \mathrm{(E) \ } 726$

Solution

Problem 2

How many two-digit positive integers have at least one $7$ as a digit?

$\mathrm{(A) \ } 10 \qquad \mathrm{(B) \ } 18\qquad \mathrm{(C) \ } 19 \qquad \mathrm{(D) \ } 20\qquad \mathrm{(E) \ } 30$

Solution

Problem 3

At each basketball practice last week, Jenny made twice as many free throws as she made at the previous practice. At her fifth practice she made $48$ free throws. How many free throws did she make at the first practice?

$\mathrm{(A) \ } 3 \qquad \mathrm{(B) \ } 6 \qquad \mathrm{(C) \ } 9 \qquad \mathrm{(D) \ } 12\qquad \mathrm{(E) \ } 15$

Solution

Problem 4

A standard six-sided die is rolled, and $P$ is the product of the five numbers that are visible. What is the largest number that is certain to divide $P$?

$\mathrm{(A) \ } 6 \qquad \mathrm{(B) \ } 12 \qquad \mathrm{(C) \ } 24 \qquad \mathrm{(D) \ } 144\qquad \mathrm{(E) \ } 720$

Solution

Problem 5

In the expression $c\cdot a^b-d$, the values of $a$, $b$, $c$, and $d$ are $0$, $1$, $2$, and $3$, although not necessarily in that order. What is the maximum possible value of the result?

$\mathrm{(A) \ } 5 \qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 8 \qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 10$

Solution

Problem 6

Which of the following numbers is a perfect square?

$\mathrm{(A) \ } 98! \cdot 99! \qquad \mathrm{(B) \ } 98! \cdot 100! \qquad \mathrm{(C) \ } 99! \cdot 100! \qquad \mathrm{(D) \ } 99! \cdot 101! \qquad \mathrm{(E) \ } 100! \cdot 101!$

Solution

Problem 7

On a trip from the United States to Canada, Isabella took $d$ U.S. dollars. At the border she exchanged them all, receiving $10$ Canadian dollars for every $7$ U.S. dollars. After spending $60$ Canadian dollars, she had $d$ Canadian dollars left. What is the sum of the digits of $d$?

$\mathrm{(A) \ } 5 \qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 8\qquad \mathrm{(E) \ } 9$

Solution

Problem 8

Minneapolis-St. Paul International Airport is $8$ miles southwest of downtown St. Paul and $10$ miles southeast of downtown Minneapolis. Which of the following is closest to the number of miles between downtown St. Paul and downtown Minneapolis?

$\mathrm{(A) \ } 13 \qquad \mathrm{(B) \ } 14\qquad \mathrm{(C) \ } 15\qquad \mathrm{(D) \ } 16\qquad \mathrm{(E) \ } 17$

Solution

Problem 9

A square has sides of length $10$, and a circle centered at one of its vertices has radius $10$. What is the area of the union of the regions enclosed by the square and the circle?

$\mathrm{(A) \ } 200+25\pi \qquad \mathrm{(B) \ } 100+75\pi \qquad \mathrm{(C) \ } 75+100\pi \qquad \mathrm{(D) \ } 100+100\pi \qquad \mathrm{(E) \ } 100+125\pi$

Solution

Problem 10

A grocer makes a display of cans in which the top row has one can and each lower row has two more cans than the row above it. If the display contains $100$ cans, how many rows does it contain?

$\mathrm{(A) \ } 5 \qquad \mathrm{(B) \ } 8 \qquad \mathrm{(C) \ } 9 \qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 11$

Solution

Problem 11

Two eight-sided dice each have faces numbered $1$ through $8$. When the dice are rolled, each face has an equal probability of appearing on the top. What is the probability that the product of the two top numbers is greater than their sum?

$\mathrm{(A) \ } \frac{1}{2} \qquad \mathrm{(B) \ } \frac{47}{64} \qquad \mathrm{(C) \ } \frac{3}{4} \qquad \mathrm{(D) \ } \frac{55}{64} \qquad \mathrm{(E) \ } \frac{7}{8}$

Solution

Problem 12

An annulus is the region between two concentric circles. The concentric circles in the figure have radii $b$ and $c$, with $b>c$. Let $OX$ be a radius of the larger circle, let $XZ$ be tangent to the smaller circle at $Z$, and let $OY$ be the radius of the larger circle that contains $Z$. Let $a=XZ$, $d=YZ$, and $e=XY$. What is the area of the annulus?

[asy] unitsize(1.5cm); defaultpen(0.8); real r1=1.5, r2=2.5; pair O=(0,0); path inner=Circle(O,r1), outer=Circle(O,r2); pair Y=(0,r2), Z=(0,r1), X=intersectionpoint( Z--(Z+(10,0)), outer ); filldraw(outer,lightgray,black); filldraw(inner,white,black); draw(X--O--Y); draw(Y--X--Z); label("$O$",O,SW); label("$X$",X,E); label("$Y$",Y,N); label("$Z$",Z,SW); label("$a$",X--Z,N); label("$b$",0.25*X,SE); label("$c$",O--Z,E); label("$d$",Y--Z,W); label("$e$",Y*0.65 + X*0.35,SW); defaultpen(0.5); dot(O); dot(X); dot(Z); dot(Y); [/asy]

$\mathrm{(A) \ } \pi a^2 \qquad \mathrm{(B) \ } \pi b^2 \qquad \mathrm{(C) \ } \pi c^2 \qquad \mathrm{(D) \ } \pi d^2 \qquad \mathrm{(E) \ } \pi e^2$

Solution

Problem 13

In the United States, coins have the following thicknesses: penny, $1.55$ mm; nickel, $1.95$ mm; dime, $1.35$ mm; quarter, $1.75$ mm. If a stack of these coins is exactly $14$ mm high, how many coins are in the stack?

$\mathrm{(A) \ } 7 \qquad \mathrm{(B) \ } 8 \qquad \mathrm{(C) \ } 9 \qquad \mathrm{(D) \ } 10 \qquad \mathrm{(E) \ } 11$

Solution

Problem 14

A bag initially contains red marbles and blue marbles only, with more blue than red. Red marbles are added to the bag until only $\frac{1}{3}$ of the marbles in the bag are blue. Then yellow marbles are added to the bag until only $\frac{1}{5}$ of the marbles in the bag are blue. Finally, the number of blue marbles in the bag is doubled. What fraction of the marbles now in the bag are blue?

$\mathrm{(A) \ } \frac{1}{5} \qquad \mathrm{(B) \ } \frac{1}{4} \qquad \mathrm{(C) \ } \frac{1}{3} \qquad \mathrm{(D) \ } \frac{2}{5} \qquad \mathrm{(E) \ } \frac{1}{2}$

Solution

Problem 15

Patty has $20$ coins consisting of nickels and dimes. If her nickels were dimes and her dimes were nickels, she would have $70$ cents more. How much are her coins worth?

$\textbf{(A)}\ \textdollar 1.15\qquad\textbf{(B)}\ \textdollar 1.20\qquad\textbf{(C)}\ \textdollar 1.25\qquad\textbf{(D)}\ \textdollar 1.30\qquad\textbf{(E)}\ \textdollar 1.35$

Solution

Problem 16

Three circles of radius $1$ are externally tangent to each other and internally tangent to a larger circle. What is the radius of the large circle?

$\mathrm{(A) \ } \frac{2 + \sqrt{6}}{3} \qquad \mathrm{(B) \ } 2 \qquad \mathrm{(C) \ } \frac{2 + 3\sqrt{2}}{2} \qquad \mathrm{(D) \ } \frac{3 + 2\sqrt{3}}{3} \qquad \mathrm{(E) \ } \frac{3 + \sqrt{3}}{2}$

Solution

Problem 17

The two digits in Jack's age are the same as the digits in Bill's age, but in reverse order. In five years Jack will be twice as old as Bill will be then. What is the difference in their current ages?

$\mathrm{(A) \ } 9 \qquad \mathrm{(B) \ } 18 \qquad \mathrm{(C) \ } 27 \qquad \mathrm{(D) \ } 36\qquad \mathrm{(E) \ } 45$

Solution

Problem 18

In the right triangle $\triangle ACE$, we have $AC=12$, $CE=16$, and $EA=20$. Points $B$, $D$, and $F$ are located on $AC$, $CE$, and $EA$, respectively, so that $AB=3$, $CD=4$, and $EF=5$. What is the ratio of the area of $\triangle DBF$ to that of $\triangle ACE$?

[asy] unitsize(0.5cm); defaultpen(0.8); pair C=(0,0), A=(0,12), E=(20,0); draw(A--C--E--cycle); pair B=A + 3*(C-A)/length(C-A); pair D=C + 4*(E-C)/length(E-C); pair F=E + 5*(A-E)/length(A-E); draw(B--D--F--cycle); label("$A$",A,N); label("$B$",B,W); label("$C$",C,SW); label("$D$",D,S); label("$E$",E,SE); label("$F$",F,NE); label("$3$",A--B,W); label("$9$",C--B,W); label("$4$",C--D,S); label("$12$",D--E,S); label("$5$",E--F,NE); label("$15$",F--A,NE); [/asy]

$\mathrm{(A) \ } \frac{1}{4} \qquad \mathrm{(B) \ } \frac{9}{25} \qquad \mathrm{(C) \ } \frac{3}{8} \qquad \mathrm{(D) \ } \frac{11}{25} \qquad \mathrm{(E) \ } \frac{7}{16}$

Solution

Problem 19

In the sequence $2001$, $2002$, $2003$, $\ldots$ , each term after the third is found by subtracting the previous term from the sum of the two terms that precede that term. For example, the fourth term is $2001 + 2002 - 2003 = 2000$. What is the $2004^\textrm{th}$ term in this sequence?

$\mathrm{(A) \ } -2004 \qquad \mathrm{(B) \ } -2 \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } 4003 \qquad \mathrm{(E) \ } 6007$

Solution

Problem 20

In $\triangle ABC$ points $D$ and $E$ lie on $BC$ and $AC$, respectively. If $AD$ and $BE$ intersect at $T$ so that $\frac{AT}{DT}=3$ and $\frac{BT}{ET}=4$, what is $\frac{CD}{BD}$?

[asy] unitsize(1.5 cm);  pair A, B, C, D, E, F, T;  A = (0,0); B = (3,3); C = (4.5,0); D = (2*C + B)/3; E = (5*C + 2*A)/7; T = extension(A,D,B,E); F = extension(D, D + A - C, B, E);  draw(A--B--C--cycle); draw(A--D); draw(B--E);   label("$A$", A, SW); label("$B$", B, N); label("$C$", C, SE); label("$D$", D, NE); label("$E$", E, S); label("$T$", T, SE);  [/asy]

$\mathrm{(A) \ } \frac{1}{8} \qquad \mathrm{(B) \ } \frac{2}{9} \qquad \mathrm{(C) \ } \frac{3}{10} \qquad \mathrm{(D) \ } \frac{4}{11} \qquad \mathrm{(E) \ } \frac{5}{12}$

Solution

Problem 21

Let $1$; $4$; $\ldots$ and $9$; $16$; $\ldots$ be two arithmetic progressions. The set $S$ is the union of the first $2004$ terms of each sequence. How many distinct numbers are in $S$?

$\mathrm{(A) \ } 3722 \qquad \mathrm{(B) \ } 3732 \qquad \mathrm{(C) \ } 3914 \qquad \mathrm{(D) \ } 3924 \qquad \mathrm{(E) \ } 4007$

Solution

Problem 22

A triangle with sides of length $5, 12,$ and $13$ has both an inscribed and a circumscribed circle. What is the distance between the centers of those circles?

$\mathrm{(A) \ } \frac{3\sqrt{5}}{2} \qquad \mathrm{(B) \ } \frac{7}{2} \qquad \mathrm{(C) \ } \sqrt{15} \qquad \mathrm{(D) \ } \frac{\sqrt{65}}{2} \qquad \mathrm{(E) \ } \frac{9}{2}$

Solution

Problem 23

Each face of a cube is painted either red or blue, each with probability $1/2$. The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color?

$\mathrm{(A) \ } \frac{1}{4} \qquad \mathrm{(B) \ } \frac{5}{16} \qquad \mathrm{(C) \ } \frac{3}{8} \qquad \mathrm{(D) \ } \frac{7}{16} \qquad \mathrm{(E) \ } \frac{1}{2}$

Solution

Problem 24

In $\bigtriangleup ABC$ we have $AB = 7$, $AC = 8$, and $BC = 9$. Point $D$ is on the circumscribed circle of the triangle so that $AD$ bisects $\angle BAC$. What is the value of $\frac{AD}{CD}$?

$\mathrm{(A) \ } \frac{9}{8} \qquad \mathrm{(B) \ } \frac{5}{3} \qquad \mathrm{(C) \ } 2 \qquad \mathrm{(D) \ } \frac{17}{7} \qquad \mathrm{(E) \ } \frac{5}{2}$

Solution

Problem 25

A circle of radius $1$ is internally tangent to two circles of radius $2$ at points $A$ and $B$, where $AB$ is a diameter of the smaller circle. What is the area of the region, shaded in the picture, that is outside the smaller circle and inside each of the two larger circles?

$\mathrm{(A) \ } \frac{5}{3} \pi - 3\sqrt 2 \qquad  \mathrm{(B) \ } \frac{5}{3} \pi - 2\sqrt 3 \qquad  \mathrm{(C) \ } \frac{8}{3} \pi - 3\sqrt 3 \qquad  \mathrm{(D) \ } \frac{8}{3} \pi - 3\sqrt 2 \qquad  \mathrm{(E) \ } \frac{8}{3} \pi - 2\sqrt 3$


[asy] unitsize(1cm); defaultpen(0.8);  pair O=(0,0), A=(0,1), B=(0,-1); path bigc1 = Circle(A,2), bigc2 = Circle(B,2), smallc = Circle(O,1);  pair[] P = intersectionpoints(bigc1, bigc2); filldraw( arc(A,P[0],P[1])--arc(B,P[1],P[0])--cycle, lightgray, black ); draw(bigc1); draw(bigc2); unfill(smallc); draw(smallc);  dot(O); dot(A); dot(B); label("$A$",A,N); label("$B$",B,S); draw( O--dir(30) ); draw( A--(A+2*dir(30)) ); draw( B--(B+2*dir(210)) );  label("$1$", O--dir(30), N ); label("$2$", A--(A+2*dir(30)), N ); label("$2$", B--(B+2*dir(210)), S );  [/asy]

Solution

See also

2004 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
2004 AMC 10A Problems
Followed by
2005 AMC 10A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png