Difference between revisions of "2019 AMC 8 Problems/Problem 6"

(Solution 1)
 
(36 intermediate revisions by 18 users not shown)
Line 1: Line 1:
== Problem 6 ==
+
==Problem==
  
 
There are <math>81</math> grid points (uniformly spaced) in the square shown in the diagram below, including the points on the edges. Point <math>P</math> is in the center of the square. Given that point <math>Q</math> is randomly chosen among the other <math>80</math> points, what is the probability that the line <math>PQ</math> is a line of symmetry for the square?
 
There are <math>81</math> grid points (uniformly spaced) in the square shown in the diagram below, including the points on the edges. Point <math>P</math> is in the center of the square. Given that point <math>Q</math> is randomly chosen among the other <math>80</math> points, what is the probability that the line <math>PQ</math> is a line of symmetry for the square?
Line 198: Line 198:
 
dot((8,8));
 
dot((8,8));
 
label("P",(4,4),NE);
 
label("P",(4,4),NE);
draw((0,8)--(8,0));
+
draw((0,4)--(3,4));
draw((8,8)--(0,0));
+
draw((0,8)--(3,5));
draw((3,0)--(3,8));
+
draw((8,8)--(5,5));
draw((0,3)--(8,3));
+
draw((4,8)--(4,5));
 +
draw((4,0)--(4,3));
 +
draw((0,0)--(3,3));
 +
draw((8,0)--(5,3));
 +
draw((5,4)--(8,4));
 
</asy>
 
</asy>
Lines of symmetry go through point P, and there are 8 directions the lines could go, and there are 4 dots at each direction.<math>\frac{4</math>*<math>8}{80}</math>=<math>\boxed{\textbf{(C)}\ \frac{2}{5}}</math>.
+
Lines of symmetry go through point <math>P</math>, and there are <math>8</math> directions the lines could go, and there are <math>4</math> dots at each direction.<math>\frac{4\times8}{80}=\boxed{\textbf{(C)} \frac{2}{5}}</math>.
~heeeeeheeeeeee
 
  
==See Also==
+
== Solution 2 ==
 +
 
 +
Divide the grid into 4 4x5 quadrants. Each row of 5 points has 1 point on a horizontal/vertical line of symmetry + 1 point on a diagonal line of symmetry: <math>\boxed{\textbf{(C)} \frac{2}{5}}</math>.
 +
 
 +
==Video Solution by Math-X (First fully understand the problem!!!)==
 +
https://youtu.be/IgpayYB48C4?si=AdzSEy4Ocrte4gEU&t=1650
 +
 
 +
~Math-X
 +
 
 +
==Video Solution (HOW TO THINK CREATIVELY!!!)==
 +
https://youtu.be/PizqK-oBLqk
 +
 
 +
~Education, the Study of Everything
 +
 
 +
== Video Solution ==
 +
The Learning Royal : https://youtu.be/8njQzoztDGc
 +
 
 +
== Video Solution 2 ==
 +
 
 +
Solution detailing how to solve the problem: https://www.youtube.com/watch?v=4L95z9DwlhI&list=PLbhMrFqoXXwmwbk2CWeYOYPRbGtmdPUhL&index=7
 +
 
 +
==Video Solution 3==
 +
https://youtu.be/TAKmC11vitM
 +
 
 +
~savannahsolver
 +
 
 +
==Video Solution by The Power of Logic(1 to 25 Full Solution)==
 +
https://youtu.be/Xm4ZGND9WoY
 +
 
 +
~Hayabusa1
 +
 
 +
==See also==
 
{{AMC8 box|year=2019|num-b=5|num-a=7}}
 
{{AMC8 box|year=2019|num-b=5|num-a=7}}
  
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 09:30, 9 November 2024

Problem

There are $81$ grid points (uniformly spaced) in the square shown in the diagram below, including the points on the edges. Point $P$ is in the center of the square. Given that point $Q$ is randomly chosen among the other $80$ points, what is the probability that the line $PQ$ is a line of symmetry for the square?

[asy] draw((0,0)--(0,8)); draw((0,8)--(8,8)); draw((8,8)--(8,0)); draw((8,0)--(0,0)); dot((0,0)); dot((0,1)); dot((0,2)); dot((0,3)); dot((0,4)); dot((0,5)); dot((0,6)); dot((0,7)); dot((0,8));  dot((1,0)); dot((1,1)); dot((1,2)); dot((1,3)); dot((1,4)); dot((1,5)); dot((1,6)); dot((1,7)); dot((1,8));  dot((2,0)); dot((2,1)); dot((2,2)); dot((2,3)); dot((2,4)); dot((2,5)); dot((2,6)); dot((2,7)); dot((2,8));  dot((3,0)); dot((3,1)); dot((3,2)); dot((3,3)); dot((3,4)); dot((3,5)); dot((3,6)); dot((3,7)); dot((3,8));  dot((4,0)); dot((4,1)); dot((4,2)); dot((4,3)); dot((4,4)); dot((4,5)); dot((4,6)); dot((4,7)); dot((4,8));  dot((5,0)); dot((5,1)); dot((5,2)); dot((5,3)); dot((5,4)); dot((5,5)); dot((5,6)); dot((5,7)); dot((5,8));  dot((6,0)); dot((6,1)); dot((6,2)); dot((6,3)); dot((6,4)); dot((6,5)); dot((6,6)); dot((6,7)); dot((6,8));  dot((7,0)); dot((7,1)); dot((7,2)); dot((7,3)); dot((7,4)); dot((7,5)); dot((7,6)); dot((7,7)); dot((7,8));  dot((8,0)); dot((8,1)); dot((8,2)); dot((8,3)); dot((8,4)); dot((8,5)); dot((8,6)); dot((8,7)); dot((8,8)); label("P",(4,4),NE); [/asy]

$\textbf{(A) }\frac{1}{5}\qquad\textbf{(B) }\frac{1}{4} \qquad\textbf{(C) }\frac{2}{5} \qquad\textbf{(D) }\frac{9}{20} \qquad\textbf{(E) }\frac{1}{2}$

Solution 1

[asy] draw((0,0)--(0,8)); draw((0,8)--(8,8)); draw((8,8)--(8,0)); draw((8,0)--(0,0)); dot((0,0)); dot((0,1)); dot((0,2)); dot((0,3)); dot((0,4)); dot((0,5)); dot((0,6)); dot((0,7)); dot((0,8));  dot((1,0)); dot((1,1)); dot((1,2)); dot((1,3)); dot((1,4)); dot((1,5)); dot((1,6)); dot((1,7)); dot((1,8));  dot((2,0)); dot((2,1)); dot((2,2)); dot((2,3)); dot((2,4)); dot((2,5)); dot((2,6)); dot((2,7)); dot((2,8));  dot((3,0)); dot((3,1)); dot((3,2)); dot((3,3)); dot((3,4)); dot((3,5)); dot((3,6)); dot((3,7)); dot((3,8));  dot((4,0)); dot((4,1)); dot((4,2)); dot((4,3)); dot((4,4)); dot((4,5)); dot((4,6)); dot((4,7)); dot((4,8));  dot((5,0)); dot((5,1)); dot((5,2)); dot((5,3)); dot((5,4)); dot((5,5)); dot((5,6)); dot((5,7)); dot((5,8));  dot((6,0)); dot((6,1)); dot((6,2)); dot((6,3)); dot((6,4)); dot((6,5)); dot((6,6)); dot((6,7)); dot((6,8));  dot((7,0)); dot((7,1)); dot((7,2)); dot((7,3)); dot((7,4)); dot((7,5)); dot((7,6)); dot((7,7)); dot((7,8));  dot((8,0)); dot((8,1)); dot((8,2)); dot((8,3)); dot((8,4)); dot((8,5)); dot((8,6)); dot((8,7)); dot((8,8)); label("P",(4,4),NE); draw((0,4)--(3,4)); draw((0,8)--(3,5)); draw((8,8)--(5,5)); draw((4,8)--(4,5)); draw((4,0)--(4,3)); draw((0,0)--(3,3)); draw((8,0)--(5,3)); draw((5,4)--(8,4)); [/asy] Lines of symmetry go through point $P$, and there are $8$ directions the lines could go, and there are $4$ dots at each direction.$\frac{4\times8}{80}=\boxed{\textbf{(C)} \frac{2}{5}}$.

Solution 2

Divide the grid into 4 4x5 quadrants. Each row of 5 points has 1 point on a horizontal/vertical line of symmetry + 1 point on a diagonal line of symmetry: $\boxed{\textbf{(C)} \frac{2}{5}}$.

Video Solution by Math-X (First fully understand the problem!!!)

https://youtu.be/IgpayYB48C4?si=AdzSEy4Ocrte4gEU&t=1650

~Math-X

Video Solution (HOW TO THINK CREATIVELY!!!)

https://youtu.be/PizqK-oBLqk

~Education, the Study of Everything

Video Solution

The Learning Royal : https://youtu.be/8njQzoztDGc

Video Solution 2

Solution detailing how to solve the problem: https://www.youtube.com/watch?v=4L95z9DwlhI&list=PLbhMrFqoXXwmwbk2CWeYOYPRbGtmdPUhL&index=7

Video Solution 3

https://youtu.be/TAKmC11vitM

~savannahsolver

Video Solution by The Power of Logic(1 to 25 Full Solution)

https://youtu.be/Xm4ZGND9WoY

~Hayabusa1

See also

2019 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png