Difference between revisions of "2006 AIME A Problems/Problem 1"

 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Problem ==
+
#REDIRECT [[2006 AIME I Problems/Problem 1]]
 
 
In convex hexagon <math>ABCDEF</math>, all six sides are congruent, <math>\angle A</math> and <math>\angle D</math> are right angles, and <math>\angle B, \angle C, \angle E,</math> and <math>\angle F</math> are congruent. The area of the hexagonal region is <math>2116(\sqrt{2}+1).</math> Find <math>AB</math>.
 
 
 
== Solution ==
 
 
 
Let the side length be called <math>x</math>.
 
[[Image:Diagram1.png]]
 
 
 
Then <math>AB=BC=CD=DE=EF=AF=x</math>.
 
 
 
The diagonal <math>BF=\sqrt{AB^2+AF^2}=\sqrt{x^2+x^2}=x\sqrt{2}</math>.
 
 
 
Then the areas of the triangles AFB and CDE in total are <math>\frac{x^2}{2}\cdot 2</math>,
 
and the area of the rectangle BCEF equals <math>x\cdot x\sqrt{2}=x^2\sqrt{2}</math>
 
 
 
Then we have to solve the equation
 
 
 
<math>2116(\sqrt{2}+1)=x^2\sqrt{2}+x^2</math>.
 
 
 
<math>2116(\sqrt{2}+1)=x^2(\sqrt{2}+1)</math>
 
 
 
<math>2116=x^2</math>
 
 
 
<math>x=46</math>
 
 
 
Therefore, AB is 46.
 
 
 
== See also ==
 
*[[2006 AIME II Problems]]
 
 
 
[[Category:Intermediate Geometry Problems]]
 

Latest revision as of 20:54, 5 June 2009