Difference between revisions of "2014 AMC 8 Problems/Problem 22"

(Solution)
(Solution 2)
 
(27 intermediate revisions by 13 users not shown)
Line 1: Line 1:
==Problem==
+
==Problem 22==
 
A <math>2</math>-digit number is such that the product of the digits plus the sum of the digits is equal to the number. What is the units digit of the number?
 
A <math>2</math>-digit number is such that the product of the digits plus the sum of the digits is equal to the number. What is the units digit of the number?
  
 
<math>\textbf{(A) }1\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }7\qquad \textbf{(E) }9</math>
 
<math>\textbf{(A) }1\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }7\qquad \textbf{(E) }9</math>
  
==Solution==
+
==Video Solution by OmegaLearn==
We can think of the number as <math>10a+b</math>, where a and b are digits. Since the number is equal to the product of the digits (<math>a\cdot b</math>) plus the sum of the digits (<math>a+b</math>), we can say that <math>10a+b=a\cdot b+a+b</math>. We can simplify this to <math>10a=a\cdot b+a</math>, and factor to <math>(10)a=(b+1)a</math>. Dividing by <math>a</math>, we have that <math>b+1=10</math>. Therefore, the units digit, <math>b</math>, is <math>\boxed{\textbf{(E) }9}</math>
+
https://youtu.be/7an5wU9Q5hk?t=2226
  
 +
==Video Solution 3==
 +
https://youtu.be/AR3Ke23N1I8 ~savannahsolver
  
 
+
==Solution==
 
+
We can think of the number as <math>10a+b</math>, where a is the tens digit and b is the unit digit. Since the number is equal to the product of the digits (<math>ab</math>) plus the sum of the digits (<math>a+b</math>), we can say that <math>10a+b=ab+a+b</math>. We can simplify this to <math>10a=ab+a</math>, which factors to <math>(10)a=(b+1)a</math>. Dividing by <math>a</math>, we have that <math>b+1=10</math>. Therefore, the units digit, <math>b</math>, is <math>\boxed{\textbf{(E) }9}</math>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:)
 
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2014|num-b=21|num-a=23}}
 
{{AMC8 box|year=2014|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 08:51, 23 July 2024

Problem 22

A $2$-digit number is such that the product of the digits plus the sum of the digits is equal to the number. What is the units digit of the number?

$\textbf{(A) }1\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }7\qquad \textbf{(E) }9$

Video Solution by OmegaLearn

https://youtu.be/7an5wU9Q5hk?t=2226

Video Solution 3

https://youtu.be/AR3Ke23N1I8 ~savannahsolver

Solution

We can think of the number as $10a+b$, where a is the tens digit and b is the unit digit. Since the number is equal to the product of the digits ($ab$) plus the sum of the digits ($a+b$), we can say that $10a+b=ab+a+b$. We can simplify this to $10a=ab+a$, which factors to $(10)a=(b+1)a$. Dividing by $a$, we have that $b+1=10$. Therefore, the units digit, $b$, is $\boxed{\textbf{(E) }9}$

See Also

2014 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png