GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2003 AMC 10A Problems"

(Problem 10: added pic)
(Problem 19)
 
(25 intermediate revisions by 13 users not shown)
Line 1: Line 1:
 +
{{AMC10 Problems|year=2003|ab=A}}
 
==Problem 1==
 
==Problem 1==
What is the Difference between the sum of the first <math>2003</math> even counting numbers and the sum of the first <math>2003</math> odd counting numbers?  
+
What is the difference between the sum of the first <math>2003</math> even counting numbers and the sum of the first <math>2003</math> odd counting numbers?  
  
<math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 2\qquad \mathrm{(D) \ } 2006\qquad \mathrm{(E) \ } 4006 </math>
+
<math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 2\qquad \mathrm{(D) \ } 2003\qquad \mathrm{(E) \ } 4006 </math>
  
 
[[2003 AMC 10A Problems/Problem 1|Solution]]
 
[[2003 AMC 10A Problems/Problem 1|Solution]]
  
 
== Problem 2 ==
 
== Problem 2 ==
Members of the Rockham Soccer Leauge buy socks and T-shirts. Socks cost &#36;4 per pair and each T-shirt costs &#36;5 more than a pair of socks. Each member needs one pair of socks and a shirt for home games and another pair of socks and a shirt for away games. If the total cost is &#36;2366, how many members are in the Leauge?  
+
Members of the Rockham Soccer League buy socks and T-shirts. Socks cost &#36;4 per pair and each T-shirt costs &#36;5 more than a pair of socks. Each member needs one pair of socks and a shirt for home games and another pair of socks and a shirt for away games. If the total cost is &#36;2366, how many members are in the League?  
  
 
<math> \mathrm{(A) \ } 77\qquad \mathrm{(B) \ } 91\qquad \mathrm{(C) \ } 143\qquad \mathrm{(D) \ } 182\qquad \mathrm{(E) \ } 286 </math>
 
<math> \mathrm{(A) \ } 77\qquad \mathrm{(B) \ } 91\qquad \mathrm{(C) \ } 143\qquad \mathrm{(D) \ } 182\qquad \mathrm{(E) \ } 286 </math>
Line 57: Line 58:
  
 
== Problem 8 ==
 
== Problem 8 ==
What is the probability that a randomly drawn positive factor of <math>60</math> is less than <math>7</math>
+
What is the probability that a randomly drawn positive factor of <math>60</math> is less than <math>7</math>?
  
 
<math> \mathrm{(A) \ } \frac{1}{10}\qquad \mathrm{(B) \ } \frac{1}{6}\qquad \mathrm{(C) \ } \frac{1}{4}\qquad \mathrm{(D) \ } \frac{1}{3}\qquad \mathrm{(E) \ } \frac{1}{2} </math>
 
<math> \mathrm{(A) \ } \frac{1}{10}\qquad \mathrm{(B) \ } \frac{1}{6}\qquad \mathrm{(C) \ } \frac{1}{4}\qquad \mathrm{(D) \ } \frac{1}{3}\qquad \mathrm{(E) \ } \frac{1}{2} </math>
Line 73: Line 74:
  
 
== Problem 10 ==
 
== Problem 10 ==
The polygon enclosed by the solid lines in the figure consists of 4 congruent squares joined edge-to-edge. One more congruent square is attatched to an edge at one of the nine positions indicated. How many of the nine resulting polygons can be folded to form a cube with one face missing?  
+
The polygon enclosed by the solid lines in the figure consists of 4 congruent squares joined edge-to-edge. One more congruent square is attached to an edge at one of the nine positions indicated. How many of the nine resulting polygons can be folded to form a cube with one face missing?  
 +
 
 +
<asy>
 +
unitsize(10mm);
 +
defaultpen(fontsize(10pt));
 +
pen finedashed=linetype("4 4");
 +
filldraw((1,1)--(2,1)--(2,2)--(4,2)--(4,3)--(1,3)--cycle,grey,black+linewidth(.8pt));
 +
draw((0,1)--(0,3)--(1,3)--(1,4)--(4,4)--(4,3)--
 +
(5,3)--(5,2)--(4,2)--(4,1)--(2,1)--(2,0)--(1,0)--(1,1)--cycle,finedashed);
 +
draw((0,2)--(2,2)--(2,4),finedashed);
 +
draw((3,1)--(3,4),finedashed);
 +
label("$1$",(1.5,0.5));
 +
draw(circle((1.5,0.5),.17));
 +
label("$2$",(2.5,1.5));
 +
draw(circle((2.5,1.5),.17));
 +
label("$3$",(3.5,1.5));
 +
draw(circle((3.5,1.5),.17));
 +
label("$4$",(4.5,2.5));
 +
draw(circle((4.5,2.5),.17));
 +
label("$5$",(3.5,3.5));
 +
draw(circle((3.5,3.5),.17));
 +
label("$6$",(2.5,3.5));
 +
draw(circle((2.5,3.5),.17));
 +
label("$7$",(1.5,3.5));
 +
draw(circle((1.5,3.5),.17));
 +
label("$8$",(0.5,2.5));
 +
draw(circle((0.5,2.5),.17));
 +
label("$9$",(0.5,1.5));
 +
draw(circle((0.5,1.5),.17));</asy>
  
[[Image:2003amc10a10.gif]]
 
  
 
<math> \mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 5\qquad \mathrm{(E) \ } 6 </math>
 
<math> \mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 5\qquad \mathrm{(E) \ } 6 </math>
Line 127: Line 155:
  
 
<math> \mathrm{(A) \ } \frac{3\sqrt{2}}{\pi}\qquad \mathrm{(B) \ }  \frac{3\sqrt{3}}{\pi}\qquad \mathrm{(C) \ } \sqrt{3}\qquad \mathrm{(D) \ } \frac{6}{\pi}\qquad \mathrm{(E) \ } \sqrt{3}\pi </math>
 
<math> \mathrm{(A) \ } \frac{3\sqrt{2}}{\pi}\qquad \mathrm{(B) \ }  \frac{3\sqrt{3}}{\pi}\qquad \mathrm{(C) \ } \sqrt{3}\qquad \mathrm{(D) \ } \frac{6}{\pi}\qquad \mathrm{(E) \ } \sqrt{3}\pi </math>
 
<math> \mathrm{(A) \ } 9\qquad \mathrm{(B) \ } 10\qquad \mathrm{(C) \ } 11\qquad \mathrm{(D) \ } 12\qquad \mathrm{(E) \ } 13 </math>
 
  
 
[[2003 AMC 10A Problems/Problem 17|Solution]]
 
[[2003 AMC 10A Problems/Problem 17|Solution]]
Line 143: Line 169:
 
== Problem 19 ==
 
== Problem 19 ==
 
A semicircle of diameter <math>1</math> sits at the top of a semicircle of diameter <math>2</math>, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a ''lune''. Determine the area of this lune.  
 
A semicircle of diameter <math>1</math> sits at the top of a semicircle of diameter <math>2</math>, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a ''lune''. Determine the area of this lune.  
 +
 +
<asy>
 +
import graph;
 +
size(150);
 +
defaultpen(fontsize(8));
 +
pair A=(-2,0), B=(2,0);
 +
filldraw(Arc((0,sqrt(3)),1,0,180)--cycle,mediumgray);
 +
filldraw(Arc((0,0),2,0,180)--cycle,white);
 +
draw(2*expi(2*pi/6)--2*expi(4*pi/6));
 +
 +
label("1",(0,sqrt(3)),(0,-1));
 +
label("2",(0,0),(0,-1));
 +
</asy>
 +
  
 
<math> \mathrm{(A) \ } \frac{1}{6}\pi-\frac{\sqrt{3}}{4}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{4}-\frac{1}{12}\pi\qquad \mathrm{(C) \ } \frac{\sqrt{3}}{4}-\frac{1}{24}\pi\qquad \mathrm{(D) \ } \frac{\sqrt{3}}{4}+\frac{1}{24}\pi\qquad \mathrm{(E) \ } \frac{\sqrt{3}}{4}+\frac{1}{12}\pi </math>
 
<math> \mathrm{(A) \ } \frac{1}{6}\pi-\frac{\sqrt{3}}{4}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{4}-\frac{1}{12}\pi\qquad \mathrm{(C) \ } \frac{\sqrt{3}}{4}-\frac{1}{24}\pi\qquad \mathrm{(D) \ } \frac{\sqrt{3}}{4}+\frac{1}{24}\pi\qquad \mathrm{(E) \ } \frac{\sqrt{3}}{4}+\frac{1}{12}\pi </math>
Line 149: Line 189:
  
 
== Problem 20 ==
 
== Problem 20 ==
A base-10 three digit number <math>n</math> is selected at random. Which of the following is closest to the probability that the base-9 representation and the base-11 representation of <math>n</math> are both thee-digit numerals?  
+
A base-10 three digit number <math>n</math> is selected at random. Which of the following is closest to the probability that the base-9 representation and the base-11 representation of <math>n</math> are both three-digit numerals?  
  
 
<math> \mathrm{(A) \ } 0.3\qquad \mathrm{(B) \ } 0.4\qquad \mathrm{(C) \ } 0.5\qquad \mathrm{(D) \ } 0.6\qquad \mathrm{(E) \ } 0.7 </math>
 
<math> \mathrm{(A) \ } 0.3\qquad \mathrm{(B) \ } 0.4\qquad \mathrm{(C) \ } 0.5\qquad \mathrm{(D) \ } 0.6\qquad \mathrm{(E) \ } 0.7 </math>
Line 156: Line 196:
  
 
== Problem 21 ==
 
== Problem 21 ==
 +
Pat is to select six cookies from a tray containing only chocolate chip, oatmeal, and peanut butter cookies. There are at least six of each of these three kinds of cookies on the tray. How many different assortments of six cookies can be selected?
 +
 +
<math> \mathrm{(A) \ } 22\qquad \mathrm{(B) \ } 25\qquad \mathrm{(C) \ } 27\qquad \mathrm{(D) \ } 28\qquad \mathrm{(E) \ } 729 </math>
  
 
[[2003 AMC 10A Problems/Problem 21|Solution]]
 
[[2003 AMC 10A Problems/Problem 21|Solution]]
  
 
== Problem 22 ==
 
== Problem 22 ==
 +
In rectangle <math>ABCD</math>, we have <math>AB=8</math>, <math>BC=9</math>, <math>H</math> is on <math>BC</math> with <math>BH=6</math>, <math>E</math> is on <math>AD</math> with <math>DE=4</math>, line <math>EC</math> intersects line <math>AH</math> at <math>G</math>, and <math>F</math> is on line <math>AD</math> with <math>GF \perp AF</math>. Find the length of <math>GF</math>.
 +
 +
<asy>
 +
unitsize(3mm);
 +
defaultpen(linewidth(.8pt)+fontsize(8pt));
 +
pair D=(0,0), Ep=(4,0), A=(9,0), B=(9,8), H=(3,8), C=(0,8), G=(-6,20), F=(-6,0);
 +
draw(D--A--B--C--D--F--G--Ep);
 +
draw(A--G);
 +
label("$F$",F,W);
 +
label("$G$",G,W);
 +
label("$C$",C,WSW);
 +
label("$H$",H,NNE);
 +
label("$6$",(6,8),N);
 +
label("$B$",B,NE);
 +
label("$A$",A,SW);
 +
label("$E$",Ep,S);
 +
label("$4$",(2,0),S);
 +
label("$D$",D,S);</asy>
 +
 +
<math> \mathrm{(A) \ } 16\qquad \mathrm{(B) \ } 20\qquad \mathrm{(C) \ } 24\qquad \mathrm{(D) \ } 28\qquad \mathrm{(E) \ } 30 </math>
  
 
[[2003 AMC 10A Problems/Problem 22|Solution]]
 
[[2003 AMC 10A Problems/Problem 22|Solution]]
  
 
== Problem 23 ==
 
== Problem 23 ==
 +
A large equilateral triangle is constructed by using toothpicks to create rows of small equilateral triangles. For example, in the figure we have <math>3</math> rows of small congruent equilateral triangles, with <math>5</math> small triangles in the base row. How many toothpicks would be needed to construct a large equilateral triangle if the base row of the triangle consists of <math>2003</math> small equilateral triangles?
 +
 +
<asy>
 +
unitsize(15mm);
 +
defaultpen(linewidth(.8pt)+fontsize(8pt));
 +
pair Ap=(0,0), Bp=(1,0), Cp=(2,0), Dp=(3,0), Gp=dir(60);
 +
pair Fp=shift(Gp)*Bp, Ep=shift(Gp)*Cp;
 +
pair Hp=shift(Gp)*Gp, Ip=shift(Gp)*Fp;
 +
pair Jp=shift(Gp)*Hp;
 +
pair[] points={Ap,Bp,Cp,Dp,Ep,Fp,Gp,Hp,Ip,Jp};
 +
draw(Ap--Dp--Jp--cycle);
 +
draw(Gp--Bp--Ip--Hp--Cp--Ep--cycle);
 +
for(pair p : points)
 +
{
 +
fill(circle(p, 0.07),white);
 +
}
 +
pair[] Cn=new pair[5];
 +
Cn[0]=centroid(Ap,Bp,Gp);
 +
Cn[1]=centroid(Gp,Bp,Fp);
 +
Cn[2]=centroid(Bp,Fp,Cp);
 +
Cn[3]=centroid(Cp,Fp,Ep);
 +
Cn[4]=centroid(Cp,Ep,Dp);
 +
label("$1$",Cn[0]);
 +
label("$2$",Cn[1]);
 +
label("$3$",Cn[2]);
 +
label("$4$",Cn[3]);
 +
label("$5$",Cn[4]);
 +
for (pair p : Cn)
 +
{
 +
draw(circle(p,0.1));
 +
}</asy>
 +
<math> \mathrm{(A) \ } 1,004,004 \qquad \mathrm{(B) \ } 1,005,006 \qquad \mathrm{(C) \ } 1,507,509 \qquad \mathrm{(D) \ } 3,015,018 \qquad \mathrm{(E) \ } 6,021,018 </math>
  
 
[[2003 AMC 10A Problems/Problem 23|Solution]]
 
[[2003 AMC 10A Problems/Problem 23|Solution]]
  
 
== Problem 24 ==
 
== Problem 24 ==
 +
Sally has five red cards numbered <math>1</math> through <math>5</math> and four blue cards numbered <math>3</math> through <math>6</math>. She stacks the cards so that the colors alternate and so that the number on each red card divides evenly into the number on each neighboring blue card. What is the sum of the numbers on the middle three cards?
 +
 +
<math> \mathrm{(A) \ } 8\qquad \mathrm{(B) \ } 9\qquad \mathrm{(C) \ } 10\qquad \mathrm{(D) \ } 11\qquad \mathrm{(E) \ } 12 </math>
  
 
[[2003 AMC 10A Problems/Problem 24|Solution]]
 
[[2003 AMC 10A Problems/Problem 24|Solution]]
  
 
== Problem 25 ==
 
== Problem 25 ==
 +
Let <math>n</math> be a <math>5</math>-digit number, and let <math>q</math> and <math>r</math> be the quotient and the remainder, respectively, when <math>n</math> is divided by <math>100</math>. For how many values of <math>n</math> is <math>q+r</math> divisible by <math>11</math>?
 +
 +
<math> \mathrm{(A) \ } 8180\qquad \mathrm{(B) \ } 8181\qquad \mathrm{(C) \ } 8182\qquad \mathrm{(D) \ } 9000\qquad \mathrm{(E) \ } 9090 </math>
  
 
[[2003 AMC 10A Problems/Problem 25|Solution]]
 
[[2003 AMC 10A Problems/Problem 25|Solution]]
  
 
== See also ==
 
== See also ==
 +
{{AMC10 box|year=2003|ab=A|before=[[2002 AMC 10B Problems]]|after=[[2003 AMC 10B Problems]]}}
 +
* [[AMC 10]]
 +
* [[AMC 10 Problems and Solutions]]
 
* [[AMC Problems and Solutions]]
 
* [[AMC Problems and Solutions]]
 +
* [[Mathematics competition resources]]
 +
 +
{{MAA Notice}}

Latest revision as of 21:27, 6 January 2021

2003 AMC 10A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the difference between the sum of the first $2003$ even counting numbers and the sum of the first $2003$ odd counting numbers?

$\mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 2\qquad \mathrm{(D) \ } 2003\qquad \mathrm{(E) \ } 4006$

Solution

Problem 2

Members of the Rockham Soccer League buy socks and T-shirts. Socks cost $4 per pair and each T-shirt costs $5 more than a pair of socks. Each member needs one pair of socks and a shirt for home games and another pair of socks and a shirt for away games. If the total cost is $2366, how many members are in the League?

$\mathrm{(A) \ } 77\qquad \mathrm{(B) \ } 91\qquad \mathrm{(C) \ } 143\qquad \mathrm{(D) \ } 182\qquad \mathrm{(E) \ } 286$

Solution

Problem 3

A solid box is $15$ cm by $10$ cm by $8$ cm. A new solid is formed by removing a cube $3$ cm on a side from each corner of this box. What percent of the original volume is removed?

$\mathrm{(A) \ } 4.5\qquad \mathrm{(B) \ } 9\qquad \mathrm{(C) \ } 12\qquad \mathrm{(D) \ } 18\qquad \mathrm{(E) \ } 24$

Solution

Problem 4

It takes Mary $30$ minutes to walk uphill $1$ km from her home to school, but it takes her only $10$ minutes to walk from school to her home along the same route. What is her average speed, in km/hr, for the round trip?

$\mathrm{(A) \ } 3\qquad \mathrm{(B) \ } 3.125\qquad \mathrm{(C) \ } 3.5\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } 4.5$

Solution

Problem 5

Let $d$ and $e$ denote the solutions of $2x^{2}+3x-5=0$. What is the value of $(d-1)(e-1)$?

$\mathrm{(A) \ } -\frac{5}{2}\qquad \mathrm{(B) \ } 0\qquad \mathrm{(C) \ } 3\qquad \mathrm{(D) \ } 5\qquad \mathrm{(E) \ } 6$

Solution

Problem 6

Define $x \heartsuit y$ to be $|x-y|$ for all real numbers $x$ and $y$. Which of the following statements is not true?

$\mathrm{(A) \ } x \heartsuit y = y \heartsuit x$ for all $x$ and $y$

$\mathrm{(B) \ } 2(x \heartsuit y) = (2x) \heartsuit (2y)$ for all $x$ and $y$

$\mathrm{(C) \ } x \heartsuit 0 = x$ for all $x$

$\mathrm{(D) \ } x \heartsuit x = 0$ for all $x$

$\mathrm{(E) \ } x \heartsuit y > 0$ if $x \neq y$

Solution

Problem 7

How many non-congruent triangles with perimeter $7$ have integer side lengths?

$\mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 3\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } 5$

Solution

Problem 8

What is the probability that a randomly drawn positive factor of $60$ is less than $7$?

$\mathrm{(A) \ } \frac{1}{10}\qquad \mathrm{(B) \ } \frac{1}{6}\qquad \mathrm{(C) \ } \frac{1}{4}\qquad \mathrm{(D) \ } \frac{1}{3}\qquad \mathrm{(E) \ } \frac{1}{2}$

Solution

Problem 9

Simplify

$\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}}$.

$\mathrm{(A) \ } \sqrt{x}\qquad \mathrm{(B) \ } \sqrt[3]{x^{2}}\qquad \mathrm{(C) \ } \sqrt[27]{x^{2}}\qquad \mathrm{(D) \ } \sqrt[54]{x}\qquad \mathrm{(E) \ } \sqrt[81]{x^{80}}$

Solution

Problem 10

The polygon enclosed by the solid lines in the figure consists of 4 congruent squares joined edge-to-edge. One more congruent square is attached to an edge at one of the nine positions indicated. How many of the nine resulting polygons can be folded to form a cube with one face missing?

[asy] unitsize(10mm); defaultpen(fontsize(10pt)); pen finedashed=linetype("4 4"); filldraw((1,1)--(2,1)--(2,2)--(4,2)--(4,3)--(1,3)--cycle,grey,black+linewidth(.8pt)); draw((0,1)--(0,3)--(1,3)--(1,4)--(4,4)--(4,3)-- (5,3)--(5,2)--(4,2)--(4,1)--(2,1)--(2,0)--(1,0)--(1,1)--cycle,finedashed); draw((0,2)--(2,2)--(2,4),finedashed); draw((3,1)--(3,4),finedashed); label("$1$",(1.5,0.5)); draw(circle((1.5,0.5),.17)); label("$2$",(2.5,1.5)); draw(circle((2.5,1.5),.17)); label("$3$",(3.5,1.5)); draw(circle((3.5,1.5),.17)); label("$4$",(4.5,2.5)); draw(circle((4.5,2.5),.17)); label("$5$",(3.5,3.5)); draw(circle((3.5,3.5),.17)); label("$6$",(2.5,3.5)); draw(circle((2.5,3.5),.17)); label("$7$",(1.5,3.5)); draw(circle((1.5,3.5),.17)); label("$8$",(0.5,2.5)); draw(circle((0.5,2.5),.17)); label("$9$",(0.5,1.5)); draw(circle((0.5,1.5),.17));[/asy]


$\mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 5\qquad \mathrm{(E) \ } 6$

Solution

Problem 11

The sum of the two 5-digit numbers $AMC10$ and $AMC12$ is $123422$. What is $A+M+C$?

$\mathrm{(A) \ } 10\qquad \mathrm{(B) \ } 11\qquad \mathrm{(C) \ } 12\qquad \mathrm{(D) \ } 13\qquad \mathrm{(E) \ } 14$

Solution

Problem 12

A point $(x,y)$ is randomly picked from inside the rectangle with vertices $(0,0)$, $(4,0)$, $(4,1)$, and $(0,1)$. What is the probability that $x<y$?

$\mathrm{(A) \ } \frac{1}{8}\qquad \mathrm{(B) \ } \frac{1}{4}\qquad \mathrm{(C) \ } \frac{3}{8}\qquad \mathrm{(D) \ } \frac{1}{2}\qquad \mathrm{(E) \ } \frac{3}{4}$

Solution

Problem 13

The sum of three numbers is $20$. The first is four times the sum of the other two. The second is seven times the third. What is the product of all three?

$\mathrm{(A) \ } 28\qquad \mathrm{(B) \ } 40\qquad \mathrm{(C) \ } 100\qquad \mathrm{(D) \ } 400\qquad \mathrm{(E) \ } 800$

Solution

Problem 14

Let $n$ be the largest integer that is the product of exactly 3 distinct prime numbers $d$, $e$, and $10d+e$, where $d$ and $e$ are single digits. What is the sum of the digits of $n$?

$\mathrm{(A) \ } 12\qquad \mathrm{(B) \ } 15\qquad \mathrm{(C) \ } 18\qquad \mathrm{(D) \ } 21\qquad \mathrm{(E) \ } 24$

Solution

Problem 15

What is the probability that an integer in the set $\{1,2,3,...,100\}$ is divisible by $2$ and not divisible by $3$?

$\mathrm{(A) \ } \frac{1}{6}\qquad \mathrm{(B) \ }  \frac{33}{100}\qquad \mathrm{(C) \ }  \frac{17}{50}\qquad \mathrm{(D) \ }  \frac{1}{2}\qquad \mathrm{(E) \ }  \frac{18}{25}$

Solution

Problem 16

What is the units digit of $13^{2003}$?

$\mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 8\qquad \mathrm{(E) \ } 9$

Solution

Problem 17

The number of inches in the perimeter of an equilateral triangle equals the number of square inches in the area of its circumscribed circle. What is the radius, in inches, of the circle?

$\mathrm{(A) \ } \frac{3\sqrt{2}}{\pi}\qquad \mathrm{(B) \ }  \frac{3\sqrt{3}}{\pi}\qquad \mathrm{(C) \ } \sqrt{3}\qquad \mathrm{(D) \ } \frac{6}{\pi}\qquad \mathrm{(E) \ } \sqrt{3}\pi$

Solution

Problem 18

What is the sum of the reciprocals of the roots of the equation

$\frac{2003}{2004}x+1+\frac{1}{x}=0$?

$\mathrm{(A) \ } -\frac{2004}{2003}\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } \frac{2003}{2004}\qquad \mathrm{(D) \ } 1\qquad \mathrm{(E) \ } \frac{2004}{2003}$

Solution

Problem 19

A semicircle of diameter $1$ sits at the top of a semicircle of diameter $2$, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a lune. Determine the area of this lune.

[asy] import graph; size(150); defaultpen(fontsize(8)); pair A=(-2,0), B=(2,0); filldraw(Arc((0,sqrt(3)),1,0,180)--cycle,mediumgray); filldraw(Arc((0,0),2,0,180)--cycle,white); draw(2*expi(2*pi/6)--2*expi(4*pi/6));  label("1",(0,sqrt(3)),(0,-1)); label("2",(0,0),(0,-1)); [/asy]


$\mathrm{(A) \ } \frac{1}{6}\pi-\frac{\sqrt{3}}{4}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{4}-\frac{1}{12}\pi\qquad \mathrm{(C) \ } \frac{\sqrt{3}}{4}-\frac{1}{24}\pi\qquad \mathrm{(D) \ } \frac{\sqrt{3}}{4}+\frac{1}{24}\pi\qquad \mathrm{(E) \ } \frac{\sqrt{3}}{4}+\frac{1}{12}\pi$

Solution

Problem 20

A base-10 three digit number $n$ is selected at random. Which of the following is closest to the probability that the base-9 representation and the base-11 representation of $n$ are both three-digit numerals?

$\mathrm{(A) \ } 0.3\qquad \mathrm{(B) \ } 0.4\qquad \mathrm{(C) \ } 0.5\qquad \mathrm{(D) \ } 0.6\qquad \mathrm{(E) \ } 0.7$

Solution

Problem 21

Pat is to select six cookies from a tray containing only chocolate chip, oatmeal, and peanut butter cookies. There are at least six of each of these three kinds of cookies on the tray. How many different assortments of six cookies can be selected?

$\mathrm{(A) \ } 22\qquad \mathrm{(B) \ } 25\qquad \mathrm{(C) \ } 27\qquad \mathrm{(D) \ } 28\qquad \mathrm{(E) \ } 729$

Solution

Problem 22

In rectangle $ABCD$, we have $AB=8$, $BC=9$, $H$ is on $BC$ with $BH=6$, $E$ is on $AD$ with $DE=4$, line $EC$ intersects line $AH$ at $G$, and $F$ is on line $AD$ with $GF \perp AF$. Find the length of $GF$.

[asy] unitsize(3mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); pair D=(0,0), Ep=(4,0), A=(9,0), B=(9,8), H=(3,8), C=(0,8), G=(-6,20), F=(-6,0); draw(D--A--B--C--D--F--G--Ep); draw(A--G); label("$F$",F,W); label("$G$",G,W); label("$C$",C,WSW); label("$H$",H,NNE); label("$6$",(6,8),N); label("$B$",B,NE); label("$A$",A,SW); label("$E$",Ep,S); label("$4$",(2,0),S); label("$D$",D,S);[/asy]

$\mathrm{(A) \ } 16\qquad \mathrm{(B) \ } 20\qquad \mathrm{(C) \ } 24\qquad \mathrm{(D) \ } 28\qquad \mathrm{(E) \ } 30$

Solution

Problem 23

A large equilateral triangle is constructed by using toothpicks to create rows of small equilateral triangles. For example, in the figure we have $3$ rows of small congruent equilateral triangles, with $5$ small triangles in the base row. How many toothpicks would be needed to construct a large equilateral triangle if the base row of the triangle consists of $2003$ small equilateral triangles?

[asy] unitsize(15mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); pair Ap=(0,0), Bp=(1,0), Cp=(2,0), Dp=(3,0), Gp=dir(60); pair Fp=shift(Gp)*Bp, Ep=shift(Gp)*Cp; pair Hp=shift(Gp)*Gp, Ip=shift(Gp)*Fp; pair Jp=shift(Gp)*Hp; pair[] points={Ap,Bp,Cp,Dp,Ep,Fp,Gp,Hp,Ip,Jp}; draw(Ap--Dp--Jp--cycle); draw(Gp--Bp--Ip--Hp--Cp--Ep--cycle); for(pair p : points) { fill(circle(p, 0.07),white); } pair[] Cn=new pair[5]; Cn[0]=centroid(Ap,Bp,Gp); Cn[1]=centroid(Gp,Bp,Fp); Cn[2]=centroid(Bp,Fp,Cp); Cn[3]=centroid(Cp,Fp,Ep); Cn[4]=centroid(Cp,Ep,Dp); label("$1$",Cn[0]); label("$2$",Cn[1]); label("$3$",Cn[2]); label("$4$",Cn[3]); label("$5$",Cn[4]); for (pair p : Cn) { draw(circle(p,0.1)); }[/asy] $\mathrm{(A) \ } 1,004,004 \qquad \mathrm{(B) \ } 1,005,006 \qquad \mathrm{(C) \ } 1,507,509 \qquad \mathrm{(D) \ } 3,015,018 \qquad \mathrm{(E) \ } 6,021,018$

Solution

Problem 24

Sally has five red cards numbered $1$ through $5$ and four blue cards numbered $3$ through $6$. She stacks the cards so that the colors alternate and so that the number on each red card divides evenly into the number on each neighboring blue card. What is the sum of the numbers on the middle three cards?

$\mathrm{(A) \ } 8\qquad \mathrm{(B) \ } 9\qquad \mathrm{(C) \ } 10\qquad \mathrm{(D) \ } 11\qquad \mathrm{(E) \ } 12$

Solution

Problem 25

Let $n$ be a $5$-digit number, and let $q$ and $r$ be the quotient and the remainder, respectively, when $n$ is divided by $100$. For how many values of $n$ is $q+r$ divisible by $11$?

$\mathrm{(A) \ } 8180\qquad \mathrm{(B) \ } 8181\qquad \mathrm{(C) \ } 8182\qquad \mathrm{(D) \ } 9000\qquad \mathrm{(E) \ } 9090$

Solution

See also

2003 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2002 AMC 10B Problems
Followed by
2003 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png