Difference between revisions of "1964 AHSME Problems/Problem 33"
Talkinaway (talk | contribs) (→Solution) |
(Added diagram to solution) |
||
Line 6: | Line 6: | ||
<asy> | <asy> | ||
− | + | pair A, B, C, D, P; | |
− | + | ||
− | draw( | + | A = (0, 0); |
− | draw( | + | B = (6.5, 0); |
− | draw( | + | C = (6.5, 4.5); |
− | label("$A$", | + | D = (0, 4.5); |
− | label("$B$", | + | P = (2.5, 1.5); |
− | label("$C$", | + | |
− | label("$D$", | + | draw(A--B--C--D--cycle); |
− | label("$P$", | + | draw(A--P); |
− | label("$3$",( | + | draw(C--P); |
− | label("$4$",( | + | draw(D--P); |
− | label("$5$",( | + | draw(B--P, dashed); |
+ | |||
+ | label("$A$", A, SW); | ||
+ | label("$B$", B, SE); | ||
+ | label("$C$", C, NE); | ||
+ | label("$D$", D, NW); | ||
+ | label("$P$", P, S); | ||
+ | label("$3$", midpoint(A--P), NW); | ||
+ | label("$4$", midpoint(D--P), NE); | ||
+ | label("$5$", midpoint(C--P), NW); | ||
</asy> | </asy> | ||
==Solution== | ==Solution== | ||
− | From point <math>P</math>, create perpendiculars to all four sides, labeling them <math>a, b, c, d</math> starting from going north and continuing clockwise. Label the length <math>PB</math> as <math>x</math>. | + | From point <math>P</math>, create perpendiculars to all four sides, labeling them <math>a, b, c, d</math> starting from going north and continuing clockwise. Label the length <math>PB</math> as <math>x</math>: |
+ | |||
+ | <asy> | ||
+ | unitsize(1cm); | ||
+ | pair A, B, C, D, P, ABfoot, BCfoot, CDfoot, DAfoot; | ||
+ | |||
+ | A = (0, 0); | ||
+ | B = (6.5, 0); | ||
+ | C = (6.5, 4.5); | ||
+ | D = (0, 4.5); | ||
+ | P = (2.5, 1.5); | ||
+ | ABfoot = (2.5, 0); | ||
+ | BCfoot = (6.5, 1.5); | ||
+ | CDfoot = (2.5, 4.5); | ||
+ | DAfoot = (0, 1.5); | ||
+ | |||
+ | draw(A--B--C--D--cycle); | ||
+ | draw(A--P); | ||
+ | draw(C--P); | ||
+ | draw(D--P); | ||
+ | draw(B--P, dashed); | ||
+ | draw(ABfoot--CDfoot); | ||
+ | draw(DAfoot--BCfoot); | ||
+ | draw(rightanglemark(P, CDfoot, D)); | ||
+ | draw(rightanglemark(P, BCfoot, C)); | ||
+ | draw(rightanglemark(P, ABfoot, B)); | ||
+ | draw(rightanglemark(P, DAfoot, A)); | ||
+ | |||
+ | label("$A$", A, SW); | ||
+ | label("$B$", B, SE); | ||
+ | label("$C$", C, NE); | ||
+ | label("$D$", D, NW); | ||
+ | label("$P$", P, 3*dir(240)); | ||
+ | label("$3$", midpoint(A--P), NW); | ||
+ | label("$4$", midpoint(D--P), NE); | ||
+ | label("$5$", midpoint(C--P), NW); | ||
+ | label("$x$", midpoint(B--P), SW); | ||
+ | label("$a$", midpoint(P--CDfoot), E); | ||
+ | label("$b$", midpoint(P--BCfoot), N); | ||
+ | label("$c$", midpoint(P--ABfoot), E); | ||
+ | label("$d$", midpoint(P--DAfoot), N); | ||
+ | </asy> | ||
We have <math>a^2 + b^2 = 5^2</math> and <math>c^2 + d^2 = 3^2</math>, leading to <math>a^2 + b^2 + c^2 + d^2 = 34</math>. | We have <math>a^2 + b^2 = 5^2</math> and <math>c^2 + d^2 = 3^2</math>, leading to <math>a^2 + b^2 + c^2 + d^2 = 34</math>. |
Latest revision as of 23:46, 14 June 2022
Problem
is a point interior to rectangle and such that inches, inches, and inches. Then , in inches, equals:
Solution
From point , create perpendiculars to all four sides, labeling them starting from going north and continuing clockwise. Label the length as :
We have and , leading to .
We also have and , leading to .
Thus, , or , which is option
See Also
1964 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 32 |
Followed by Problem 34 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.