Difference between revisions of "1964 AHSME Problems/Problem 22"
Talkinaway (talk | contribs) (→Solution) |
(→Solution) |
||
Line 19: | Line 19: | ||
The entire quadrilateral <math>ABEF</math> has area <math>\frac{1}{4} + \frac{1}{6} = \frac{5}{12}</math>. This is <math>5</math> times larger than the area of <math>\triangle DFE</math>, so the ratio is <math>1:5</math>, or <math>\boxed{\textbf{(C)}}</math>. | The entire quadrilateral <math>ABEF</math> has area <math>\frac{1}{4} + \frac{1}{6} = \frac{5}{12}</math>. This is <math>5</math> times larger than the area of <math>\triangle DFE</math>, so the ratio is <math>1:5</math>, or <math>\boxed{\textbf{(C)}}</math>. | ||
+ | |||
+ | == Solution 2 == | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \frac{A_{DFE}}{A_{ADE}} &= \frac{\frac{1}{3}DA}{DA} = \frac{1}{3} \\ | ||
+ | A_{DFE} &= \frac{1}{3}A_{ADE} \\ | ||
+ | A_{ADE} &= \frac{1}{2}A_{ADB} = \frac{1}{4}A_{ABCD} \\ | ||
+ | \implies A_{DFE} &= \frac{1}{3} \cdot \frac{1}{4} A_{ABCD} = \frac{1}{12} A_{ABCD} \\ | ||
+ | A_{ABEF} &= A_{ABD} - A_{DFE} \\ | ||
+ | &= \frac{1}{2}A_{ABCD} - \frac{1}{12}A_{ABCD} \\ | ||
+ | &= \frac{5}{12}A_{ABCD} | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | Therefore, <math>\frac{A_{DFE}}{A_{ABEF}} = \frac{\frac{1}{12}}{\frac{5}{12}} = \frac{1}{5}</math>, giving us the answer <math>\boxed{\textbf{(C)}}</math>. -nullptr07 | ||
==See Also== | ==See Also== |
Latest revision as of 22:28, 29 June 2023
Contents
Problem
Given parallelogram with the midpoint of diagonal . Point is connected to a point in so that . What is the ratio of the area of to the area of quadrilateral ?
Solution
If it works for a parallelogram , it should also work for a unit square, with . We are given that is the midpoint of , so . If is on , then . We note that and , so means , or , and hence .
We note that has a base that is and an altitude from to that is . Therefore, .
Quadrilateral can be split into and . The first triangle is of the unit square cut diagonally, so . The second triangle has base that is and height to that is . Therefore, .
The entire quadrilateral has area . This is times larger than the area of , so the ratio is , or .
Solution 2
Therefore, , giving us the answer . -nullptr07
See Also
1964 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.