Difference between revisions of "Exradius"

 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
Excircle
 
Excircle
The radius of an excircle. Let a triangle have exradius r_A (sometimes denoted  rho_A), opposite side of length a and angle A, area Delta, and semiperimeter s. Then
+
 
<math>
+
The radius of an excircle. Let a triangle have exradius <math>r_A</math> (sometimes denoted  <math>\rho_A</math>), opposite side of length <math>a</math> and angle <math>A</math>, area <math>\Delta</math>, and semiperimeter <math>s</math>. Then
r_1 = Delta/(s-a)
+
 
(1)
+
<math>r_1 = \frac{\Delta}{s-a}
= sqrt((s(s-b)(s-c))/(s-a))
+
= \sqrt{\frac{s(s-b)(s-c)}{s-a}}
(2)
+
= 4R\sin{\frac{A}{2}}\cos{\frac{B}{2}}\cos{\frac{C}{2}}
= 4Rsin(1/2A)cos(1/2B)cos(1/2C)
 
(3)
 
 
</math>
 
</math>
(Johnson 1929, p. 189), where R is the circumradius. Let r be the inradius, then
+
(Johnson 1929, p. 189), where <math>R</math> is the circumradius. Let <math>r</math> be the inradius, then
 +
 
 +
<math>4R=r_1+r_2+r_3-r</math>
 +
 
 +
and
 +
 
 +
<math>\frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3}=\frac{1}{r}</math>
 +
 
  
4R=r_1+r_2+r_3-r
 
(4)
 
1/(r_1)+1/(r_2)+1/(r_3)=1/r
 
(5)
 
 
(Casey 1888, p. 65) and
 
(Casey 1888, p. 65) and
  
  rr_1r_2r_3=Delta^2.
+
  <math>rr_1r_2r_3=\Delta^2</math>
(6)
+
 
 +
 
 
Some fascinating formulas due to Feuerbach are
 
Some fascinating formulas due to Feuerbach are
  
  r(r_2r_3+r_3r_1+r_1r_2)=sDelta=r_1r_2r_3  
+
  <math>r(r_2r_3+r_3r_1+r_1r_2)=s\Delta=r_1r_2r_3</math>
r(r_1+r_2+r_3)=bc+ca+ab-s^2  
+
<math>r(r_1+r_2+r_3)=bc+ca+ab-s^2 </math>
rr_1+rr_2+rr_3+r_1r_2+r_2r_3+r_3r_1=bc+ca+ab  
+
<math>rr_1+rr_2+rr_3+r_1r_2+r_2r_3+r_3r_1=bc+ca+ab</math>
r_2r_3+r_3r_1+r_1r_2-rr_1-rr_2-rr_3=1/2(a^2+b^2+c^2)
+
<math>r_2r_3+r_3r_1+r_1r_2-rr_1-rr_2-rr_3=\frac{1}{2}(a^2+b^2+c^2)</math>
 +
 
 +
Reference:
 +
 
 +
Weisstein, Eric W. "Exradius." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Exradius.html

Latest revision as of 12:54, 21 January 2024

Excircle

The radius of an excircle. Let a triangle have exradius $r_A$ (sometimes denoted $\rho_A$), opposite side of length $a$ and angle $A$, area $\Delta$, and semiperimeter $s$. Then

$r_1	=	\frac{\Delta}{s-a}	 	=	\sqrt{\frac{s(s-b)(s-c)}{s-a}}	 	=	4R\sin{\frac{A}{2}}\cos{\frac{B}{2}}\cos{\frac{C}{2}}$

(Johnson 1929, p. 189), where $R$ is the circumradius. Let $r$ be the inradius, then

$4R=r_1+r_2+r_3-r$ 	

and

$\frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3}=\frac{1}{r}$ 	


(Casey 1888, p. 65) and

$rr_1r_2r_3=\Delta^2$ 	


Some fascinating formulas due to Feuerbach are

$r(r_2r_3+r_3r_1+r_1r_2)=s\Delta=r_1r_2r_3$ 
$r(r_1+r_2+r_3)=bc+ca+ab-s^2$
$rr_1+rr_2+rr_3+r_1r_2+r_2r_3+r_3r_1=bc+ca+ab$ 
$r_2r_3+r_3r_1+r_1r_2-rr_1-rr_2-rr_3=\frac{1}{2}(a^2+b^2+c^2)$

Reference:

Weisstein, Eric W. "Exradius." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Exradius.html