Difference between revisions of "2003 JBMO Problems/Problem 4"
(→Solution) |
Advancedjus (talk | contribs) m (→Solution) |
||
Line 37: | Line 37: | ||
So, | So, | ||
− | <math>\Sigma \frac {1+x^2}{1+y+z^2} \geq \Sigma\frac {2(1+x^2)}{(y^2+1)+2(z^2+1)} = 2\Sigma \frac {1+x^2}{y^2+1+2(z^2+1)} = 2\Sigma \frac {p}{q+2r} \geq 2*1 = 2</math> | + | <math>\Sigma \frac {1+x^2}{1+y+z^2} \geq \Sigma\frac {2(1+x^2)}{(y^2+1)+2(z^2+1)} = 2\Sigma \frac {1+x^2}{y^2+1+2(z^2+1)} = 2\Sigma \frac {p}{q+2r} \geq 2*1 = 2</math>, as desired. |
Latest revision as of 17:17, 25 April 2021
Problem
Let . Prove that
Solution
Since and , we have that and are always positive.
Hence, and must also be positive.
From the inequality , we obtain that and, analogously, . Similarly, and .
Now,
Substituting and , we now need to prove .
We have
By Cauchy-Schwarz,
Since , we have .
Thus,
So,
, as desired.