Difference between revisions of "2014 Canadian MO Problems/Problem 1"

(Solution)
 
Line 3: Line 3:
 
== Solution ==
 
== Solution ==
 
<math>\frac{a_1}{1+a_1}+\frac{a_2}{(1+a_1)(1+a_2)}+\cdots+\frac{a_n}{(1+a_1)(1+a_2)\cdots (1+a_n)}\\=(1-\frac{1}{1+a_1})+(\frac{1}{1+a_1}-\frac{1}{(1+a_1)(1+a_2)})+\cdots+(\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_{n-1})}-\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_n)})\\=1-\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_n)}\\\geq 1-\frac{1}{(2\sqrt{1\cdot a_1)}(2\sqrt{1\cdot a_2)}\cdots (2\sqrt{1\cdot a_n)}}\\=1-\frac{1}{2^n}\\=\frac{2^n-1}{2^n}</math>
 
<math>\frac{a_1}{1+a_1}+\frac{a_2}{(1+a_1)(1+a_2)}+\cdots+\frac{a_n}{(1+a_1)(1+a_2)\cdots (1+a_n)}\\=(1-\frac{1}{1+a_1})+(\frac{1}{1+a_1}-\frac{1}{(1+a_1)(1+a_2)})+\cdots+(\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_{n-1})}-\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_n)})\\=1-\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_n)}\\\geq 1-\frac{1}{(2\sqrt{1\cdot a_1)}(2\sqrt{1\cdot a_2)}\cdots (2\sqrt{1\cdot a_n)}}\\=1-\frac{1}{2^n}\\=\frac{2^n-1}{2^n}</math>
 +
 +
{{alternate solutions}}

Latest revision as of 21:26, 26 November 2023

Problem 1

Let $a_1,a_2,\dots,a_n$ be positive real numbers whose product is $1$. Show that the sum $\textstyle\frac{a_1}{1+a_1}+\frac{a_2}{(1+a_1)(1+a_2)}+\frac{a_3}{(1+a_1)(1+a_2)(1+a_3)}+\cdots+\frac{a_n}{(1+a_1)(1+a_2)\cdots(1+a_n)}$ is greater than or equal to $\frac{2^n-1}{2^n}$.

Solution

$\frac{a_1}{1+a_1}+\frac{a_2}{(1+a_1)(1+a_2)}+\cdots+\frac{a_n}{(1+a_1)(1+a_2)\cdots (1+a_n)}\\=(1-\frac{1}{1+a_1})+(\frac{1}{1+a_1}-\frac{1}{(1+a_1)(1+a_2)})+\cdots+(\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_{n-1})}-\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_n)})\\=1-\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_n)}\\\geq 1-\frac{1}{(2\sqrt{1\cdot a_1)}(2\sqrt{1\cdot a_2)}\cdots (2\sqrt{1\cdot a_n)}}\\=1-\frac{1}{2^n}\\=\frac{2^n-1}{2^n}$

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.