Difference between revisions of "1981 AHSME Problems/Problem 1"

 
Line 5: Line 5:
  
  
==Solution==
+
==Solution 1==
<math>\boxed{\textbf{(E) }16}</math>
+
If we square both sides of the <math>\sqrt{x+2} = 2</math>, we will get <math>x+2 = 4</math>, if we square that again, we get <math>(x+2)^2 = \boxed{\textbf{(E) }16}</math>
 +
 
 +
==Solution 2==
 +
We can immediately get that <math>x = 2</math>, after we square <math>(2+2)</math>, we get <math>\boxed{\textbf{(E) }16}</math>

Latest revision as of 00:26, 15 January 2020

Problem

If $\sqrt{x+2}=2$, then $(x+2)^2$ equals:

$\textbf{(A)}\ \sqrt{2}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 8\qquad\textbf{(E)}\ 16$


Solution 1

If we square both sides of the $\sqrt{x+2} = 2$, we will get $x+2 = 4$, if we square that again, we get $(x+2)^2 = \boxed{\textbf{(E) }16}$

Solution 2

We can immediately get that $x = 2$, after we square $(2+2)$, we get $\boxed{\textbf{(E) }16}$