Difference between revisions of "1988 IMO Problems/Problem 5"
Riya tapas (talk | contribs) (Created page with "elkrgljklsjfklgjlkfj'g;sklfjg;ksdjfg;ksf;gk;fskg;kj;ksjk;lj") |
|||
(4 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | In a right-angled triangle <math> ABC</math> let <math> AD</math> be the altitude drawn to the hypotenuse and let the straight line joining the incentres of the triangles <math> ABD, ACD</math> intersect the sides <math> AB, AC</math> at the points <math> K,L</math> respectively. If <math> E</math> and <math> E_1</math> dnote the areas of triangles <math> ABC</math> and <math> AKL</math> respectively, show that | ||
+ | <cmath> \frac {E}{E_1} \geq 2.</cmath> | ||
+ | |||
+ | ==Solution== | ||
+ | Lemma: Through the incenter <math>I</math> of <math>\triangle{ABC}</math> draw a line that meets the sides <math>AB</math> and <math>AC</math> at <math>P</math> and <math>Q</math>, then: | ||
+ | <cmath> \frac{AB}{AP} \cdot AC + \frac{AC}{AQ} \cdot AB = AB+BC+AC </cmath> | ||
+ | Proof of the lemma: | ||
+ | Consider the general case: <math>M</math> is any point on side <math>BC</math> and <math>PQ</math> is a line cutting AB, AM, AC at P, N, Q. Then: | ||
+ | |||
+ | <math>\frac{AM}{AN}=\frac{S_{APMQ}}{\triangle{APQ}}=\frac{\triangle{APM}+\triangle{AQM}}{\triangle{PQA}}=\frac{\frac{AP}{AB}\triangle{ABM}+\frac{AQ}{AC}\triangle{ACM}}{\frac{AP\cdot AQ}{AB \cdot AC}}=</math> | ||
+ | |||
+ | <math>=\frac{AC}{AQ}\cdot \frac{BM}{BC}+\frac{AB}{AP}\cdot \frac{CM}{BC}</math> | ||
+ | |||
+ | If <math>N</math> is the incentre then <math>\frac{AM}{AN}=\frac{AB+BC+CA}{AB+AC}</math>, <math>\frac{BM}{BC}=\frac{AB}{AB+AC}</math> and <math>\frac{CM}{BC}=\frac{AC}{AC+AB}</math>. Plug them in we get: | ||
+ | <cmath> \frac{AB}{AP} \cdot AC + \frac{AC}{AQ} \cdot AB = AB+BC+AC </cmath> | ||
+ | |||
+ | Back to the problem | ||
+ | Let <math>I_1</math> and <math>I_2</math> be the areas of <math>\triangle{ABD}</math> and <math>\triangle{ACD}</math> and <math>E</math> be the intersection of <math>KL</math> and <math>AD</math>. Thus apply our formula in the two triangles we get: | ||
+ | <cmath> \frac{AD}{AE} \cdot AB + \frac{AB}{AK} \cdot AD = AB+BD+AD </cmath> | ||
+ | and | ||
+ | <cmath> \frac{AD}{AE} \cdot AC + \frac{AC}{AL} \cdot AD = AC+CD+AD </cmath> | ||
+ | Cancel out the term <math>\frac{AD}{AE}</math>, we get: | ||
+ | <cmath> \frac{AB+BD+AD-\frac{AB}{AK} \cdot AD }{AC+CD+AD- \frac{AC}{AL} \cdot AD }=\frac{AB}{AC} </cmath> | ||
+ | <cmath> AB \cdot CD + AB \cdot AD - \frac{AB \cdot AC \cdot AD}{AL}=AC \cdot BD+ AC \cdot AD -\frac{AB \cdot AC \cdot AD}{AK} </cmath> | ||
+ | <cmath> AB+AB \cdot \frac{CD}{AD}-\frac{AB \cdot AC}{AL}=AC+ AC \cdot \frac{BD}{AD} - \frac{AB \cdot AC}{AK} </cmath> | ||
+ | <cmath> AB+AC - \frac{AB \cdot AC}{AL}=AB+AC - \frac{AB \cdot AC}{AK} </cmath> | ||
+ | <cmath> \frac{AB \cdot AC}{AK} = \frac{AB \cdot AC}{AL} </cmath> | ||
+ | So we conclude <math>AK=AL</math>. | ||
+ | |||
+ | Hence <math>\angle{AKI_1}=45^o=\angle{ADI_1}</math> and <math>\angle{ALI_2}=45^o=\angle{ADI_2}</math>, thus <math>\triangle{AK_1} \cong \triangle{ADI_1}</math> and <math>\triangle{ALI_2} \cong \triangle{ADI_2}</math>. Thus <math>AK=AD=AL</math>. So the area ratio is: | ||
+ | <cmath> \frac{E}{E_1}=\frac{AB \cdot AC}{AD^2} = \frac{BC}{AD} =\frac{BD+CD}{\sqrt{BD \cdot CD}}\geq 2 </cmath> | ||
+ | |||
+ | This solution was posted and copyrighted by shobber. The original thread for this problem can be found here: [https://aops.com/community/p510257] | ||
+ | |||
+ | == See Also == {{IMO box|year=1988|num-b=4|num-a=6}} | ||
+ | |||
+ | [[Category:Olympiad Geometry Problems]] |
Latest revision as of 10:38, 30 January 2021
Problem
In a right-angled triangle let be the altitude drawn to the hypotenuse and let the straight line joining the incentres of the triangles intersect the sides at the points respectively. If and dnote the areas of triangles and respectively, show that
Solution
Lemma: Through the incenter of draw a line that meets the sides and at and , then: Proof of the lemma: Consider the general case: is any point on side and is a line cutting AB, AM, AC at P, N, Q. Then:
If is the incentre then , and . Plug them in we get:
Back to the problem Let and be the areas of and and be the intersection of and . Thus apply our formula in the two triangles we get: and Cancel out the term , we get: So we conclude .
Hence and , thus and . Thus . So the area ratio is:
This solution was posted and copyrighted by shobber. The original thread for this problem can be found here: [1]
See Also
1988 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |