Difference between revisions of "2019 AMC 12B Problems/Problem 4"

(Solution)
(Redirected page to 2019 AMC 10B Problems/Problem 6)
(Tag: New redirect)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
==Problem==
+
#REDIRECT[[2019_AMC_10B_Problems/Problem_6]]
A positive integer <math>n</math> satisfies the equation <math>(n+1)!+(n+2)!=440\cdot n!</math>. What is the sum of the digits of <math>n</math>?
 
 
 
<math>\textbf{(A) } 2 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 10\qquad \textbf{(D) } 12 \qquad \textbf{(E) } 15</math>
 
 
 
==Solution==
 
Dividing both sides by <math>n!</math> gives
 
<cmath>(n+1)+(n+2)(n+1)=440 \Rightarrow n^2+4n-437=0 \Rightarrow (n-19)(n+23).</cmath>
 
Since <math>n</math> is positive, <math>n=19</math>. The answer is <math>1+9=10\Rightarrow \boxed{C}.</math>
 
 
 
==See Also==
 
{{AMC12 box|year=2019|ab=B|num-b=3|num-a=5}}
 
{{MAA Notice}}
 

Latest revision as of 14:28, 14 February 2019