Difference between revisions of "2016 USAMO Problems/Problem 4"

(Alternative Solution 1)
m (Solution 2)
 
(2 intermediate revisions by one other user not shown)
Line 46: Line 46:
  
 
==Alternative Solution 1==
 
==Alternative Solution 1==
From steps 1 and 2 of Solution 1 we have that <math>f(0)=0</math>, and <math>f(-y) \cdot f(y)=(f(y))^2</math>. Therefore, if <math>f(y) \ne 0</math>, then <math>f(y)=f(-y)</math>. Furthermore, setting <math>y=-x</math> gives us <math>(f(x)-x^2) \cdot f(4x) + (f(-x)-x^2) \cdot f(4x) = f(0) = 0</math>. The LHS can be factored as <math>(f(x)+f(-x)-2x^2) \cdot f(4x) = 0</math>. In particular, if <math>f(4x) \ne 0</math>, then we have <math>f(x)+f(-x)=2x^2</math>. However, since we have from step 2 that <math>f(x)=f(-x)</math>, assuming <math>f(x) \ne 0</math>, the equation becomes <math>2f(x)=2x^2</math>, so <math>f(x)=0, x^2</math> are the only possible solutions.
+
From steps 1 and 2 of Solution 1 we have that <math>f(0)=0</math>, and <math>f(-y) \cdot f(y)=(f(y))^2</math>. Therefore, if <math>f(y) \ne 0</math>, then <math>f(y)=f(-y)</math>. Furthermore, setting <math>y=-x</math> gives us <math>(f(x)-x^2) \cdot f(4x) + (f(-x)-x^2) \cdot f(4x) = f(0) = 0</math>. The LHS can be factored as <math>(f(x)+f(-x)-2x^2) \cdot f(4x) = 0</math>. In particular, if <math>f(4x) \ne 0</math>, then we have <math>f(x)+f(-x)=2x^2</math>. However, since we have from step 2 that <math>f(x)=f(-x)</math>, assuming <math>f(x) \ne 0</math>, the equation becomes <math>2f(x)=2x^2</math>, so for every <math>x</math>, <math>f(x)</math> is equivalent to either <math>0</math> or <math>x^2</math>. From step 6 of Solution 1, we can prove that <math>f(x)=0</math>, and <math>f(x)=x^2</math> are the only possible solutions.
  
 
==Solution 2==
 
==Solution 2==
Line 55: Line 55:
 
Step 3: <math>y=-x \implies 2f(4x)(f(x)-x^{2})=0</math>. Thus, <math>\forall x</math>, we have <math>f(4x)=0</math> or <math>f(x)=x^{2}</math>.
 
Step 3: <math>y=-x \implies 2f(4x)(f(x)-x^{2})=0</math>. Thus, <math>\forall x</math>, we have <math>f(4x)=0</math> or <math>f(x)=x^{2}</math>.
  
Step 4: We now assume <math>f(x) \not = 0</math>, <math>x\not = 0</math>. We have <math>f(\frac{x}{4})=\frac{x^{2}}{16}</math>. Now, setting <math>x=y=\frac{x}{4}</math>, we have <math>f(\frac{x}{2}=\frac{x^{2}}{4}</math> or <math>f(\frac{x}{2})=0</math>. The former implies that <math>f(x)=0</math> or <math>x^{2}</math>. The latter implies that <math>f(x)=0</math> or <math>f(x)=\frac{x^{2}}{2}</math>. Assume the latter. <math>y=-2x \implies -\frac{3y^{2}}{2}f(7y)-{2y^{2}}f(5y)=\frac{x^{2}}{2}</math>. Clearly, this implies that <math>f(x)</math> is negative for some <math>m</math>. Now, we have <math>f(\frac{m}{4})=\frac{m^{2}}{16} \implies f(\frac{m}{2})=0,\frac{m^{2}}{4} \implies f(m) \geq 0</math>, which is a contradiction. Thus, <math>\forall x</math><math>f(x)=0</math> or <math>f(x)=x^{2}</math>.
+
Step 4: We now assume <math>f(x) \not = 0</math>, <math>x\not = 0</math>. We have <math>f(\frac{x}{4})=\frac{x^{2}}{16}</math>. Now, setting <math>x=y=\frac{x}{4}</math>, we have <math>f(\frac{x}{2})=\frac{x^{2}}{4}</math> or <math>f(\frac{x}{2})=0</math>. The former implies that <math>f(x)=0</math> or <math>x^{2}</math>. The latter implies that <math>f(x)=0</math> or <math>f(x)=\frac{x^{2}}{2}</math>. Assume the latter. <math>y=-2x \implies -\frac{3y^{2}}{2}f(7y)-{2y^{2}}f(5y)=\frac{x^{2}}{2}</math>. Clearly, this implies that <math>f(x)</math> is negative for some <math>m</math>. Now, we have <math>f(\frac{m}{4})=\frac{m^{2}}{16} \implies f(\frac{m}{2})=0,\frac{m^{2}}{4} \implies f(m) \geq 0</math>, which is a contradiction. Thus, <math>\forall x</math><math>f(x)=0</math> or <math>f(x)=x^{2}</math>.
  
 
Step 5: We now assume <math>f(x)=0</math>, <math>f(y)=y^{2}</math> for some <math>x,y \not = 0</math>. Let <math>m</math> be sufficiently large integer, let <math>z=|4^{m}x|</math> and take the absolute value of <math>y</math>(since the function is even). Choose <math>c</math> such that <math>3z-c=y</math>. Note that we have <math>\frac{c}{z}</math>~<math>3</math> and <math>\frac{y}{z}</math>~<math>0</math>. Note that <math>f(z)=0</math>. Now, <math>x=z, y=c \implies</math> LHS is positive, as the second term is positive and the first term is nonnegative and thus the right term is equal to <math>(z+c)^{4}</math>~<math>256z^{4}</math>. Now if <math>f(z-3c)=0</math>, the second term of the LHS/RHS clearly ~0 as <math>m \to \infty</math>. if <math>f(z-3c)=0</math>, then we have LHS/RHS ~ <math>0</math>, otherwise, we have LHS/RHS~<math>\frac{8^{2}\cdot 3z^{4}}{256z^{4}}</math>~<math>\frac{3}{4}</math>, a contradiction, as we're clearly not dividing by <math>0</math>, and we should have LHS/RHS=1.
 
Step 5: We now assume <math>f(x)=0</math>, <math>f(y)=y^{2}</math> for some <math>x,y \not = 0</math>. Let <math>m</math> be sufficiently large integer, let <math>z=|4^{m}x|</math> and take the absolute value of <math>y</math>(since the function is even). Choose <math>c</math> such that <math>3z-c=y</math>. Note that we have <math>\frac{c}{z}</math>~<math>3</math> and <math>\frac{y}{z}</math>~<math>0</math>. Note that <math>f(z)=0</math>. Now, <math>x=z, y=c \implies</math> LHS is positive, as the second term is positive and the first term is nonnegative and thus the right term is equal to <math>(z+c)^{4}</math>~<math>256z^{4}</math>. Now if <math>f(z-3c)=0</math>, the second term of the LHS/RHS clearly ~0 as <math>m \to \infty</math>. if <math>f(z-3c)=0</math>, then we have LHS/RHS ~ <math>0</math>, otherwise, we have LHS/RHS~<math>\frac{8^{2}\cdot 3z^{4}}{256z^{4}}</math>~<math>\frac{3}{4}</math>, a contradiction, as we're clearly not dividing by <math>0</math>, and we should have LHS/RHS=1.

Latest revision as of 23:13, 27 February 2020

Problem

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all real numbers $x$ and $y$, \[(f(x)+xy)\cdot f(x-3y)+(f(y)+xy)\cdot f(3x-y)=(f(x+y))^2.\]

Solution 1

Step 1: Set $x = y = 0$ to obtain $f(0) = 0.$

Step 2: Set $x = 0$ to obtain $f(y)f(-y) = f(y)^2.$

$\indent$ In particular, if $f(y) \ne 0$ then $f(y) = f(-y).$

$\indent$ In addition, replacing $y \to -t$, it follows that $f(t) = 0 \implies f(-t) = 0$ for all $t \in \mathbb{R}.$

Step 3: Set $x = 3y$ to obtain $\left[f(y) + 3y^2\right]f(8y) = f(4y)^2.$

$\indent$ In particular, replacing $y \to t/8$, it follows that $f(t) = 0 \implies f(t/2) = 0$ for all $t \in \mathbb{R}.$

Step 4: Set $y = -x$ to obtain $f(4x)\left[f(x) + f(-x) - 2x^2\right] = 0.$

$\indent$ In particular, if $f(x) \ne 0$, then $f(4x) \ne 0$ by the observation from Step 3, because $f(4x) = 0 \implies f(2x) = 0 \implies f(x) = 0.$ Hence, the above equation implies that $2x^2 = f(x) + f(-x) = 2f(x)$, where the last step follows from the first observation from Step 2.

$\indent$ Therefore, either $f(x) = 0$ or $f(x) = x^2$ for each $x.$

$\indent$ Looking back on the equation from Step 3, it follows that $f(y) + 3y^2 \ne 0$ for any nonzero $y.$ Therefore, replacing $y \to t/4$ in this equation, it follows that $f(t) = 0 \implies f(2t) = 0.$

Step 5: If $f(a) = f(b) = 0$, then $f(b - a) = 0.$

$\indent$ This follows by choosing $x, y$ such that $x - 3y = a$ and $3x - y = b.$ Then $x + y = \tfrac{b - a}{2}$, so plugging $x, y$ into the given equation, we deduce that $f\left(\tfrac{b - a}{2}\right) = 0.$ Therefore, by the third observation from Step 4, we obtain $f(b - a) = 0$, as desired.

Step 6: If $f \not\equiv 0$, then $f(t) = 0 \implies t = 0.$

$\indent$ Suppose by way of contradiction that there exists an nonzero $t$ with $f(t) = 0.$ Choose $x, y$ such that $f(x) \ne 0$ and $x + y = t.$ The following three facts are crucial:

$\indent$ 1. $f(y) \ne 0.$ This is because $(x + y) - y = x$, so by Step 5, $f(y) = 0 \implies f(x) = 0$, impossible.

$\indent$ 2. $f(x - 3y) \ne 0.$ This is because $(x + y) - (x - 3y) = 4y$, so by Step 5 and the observation from Step 3, $f(x - 3y) = 0 \implies f(4y) = 0 \implies f(2y) = 0 \implies f(y) = 0$, impossible.

$\indent$ 3. $f(3x - y) \ne 0.$ This is because by the second observation from Step 2, $f(3x - y) = 0 \implies f(y - 3x) = 0.$ Then because $(x + y) - (y - 3x) = 4x$, Step 5 together with the observation from Step 3 yield $f(3x - y) = 0 \implies f(4x) = 0 \implies f(2x) = 0 \implies f(x) = 0$, impossible.

$\indent$ By the second observation from Step 4, these three facts imply that $f(y) = y^2$ and $f(x - 3y) = \left(x - 3y\right)^2$ and $f(3x - y) = \left(3x - y\right)^2.$ By plugging into the given equation, it follows that \begin{align*} \left(x^2 + xy\right)\left(x - 3y\right)^2 + \left(y^2 + xy\right)\left(3x - y\right)^2 = 0. \end{align*} But the above expression miraculously factors into $\left(x + y\right)^4$! This is clearly a contradiction, since $t = x + y \ne 0$ by assumption. This completes Step 6.

Step 7: By Step 6 and the second observation from Step 4, the only possible solutions are $f \equiv 0$ and $f(x) = x^2$ for all $x \in \mathbb{R}.$ It's easy to check that both of these work, so we're done.

Alternative Solution 1

From steps 1 and 2 of Solution 1 we have that $f(0)=0$, and $f(-y) \cdot f(y)=(f(y))^2$. Therefore, if $f(y) \ne 0$, then $f(y)=f(-y)$. Furthermore, setting $y=-x$ gives us $(f(x)-x^2) \cdot f(4x) + (f(-x)-x^2) \cdot f(4x) = f(0) = 0$. The LHS can be factored as $(f(x)+f(-x)-2x^2) \cdot f(4x) = 0$. In particular, if $f(4x) \ne 0$, then we have $f(x)+f(-x)=2x^2$. However, since we have from step 2 that $f(x)=f(-x)$, assuming $f(x) \ne 0$, the equation becomes $2f(x)=2x^2$, so for every $x$, $f(x)$ is equivalent to either $0$ or $x^2$. From step 6 of Solution 1, we can prove that $f(x)=0$, and $f(x)=x^2$ are the only possible solutions.

Solution 2

Step 1: $x=y=0 \implies f(0)=0$

Step 2: $x=0 \implies f(y)f(-y)=f(y)^{2}$. Now, assume $y \not = 0$. Then, if $f(y)=0$, we substitute in $-y$ to get $f(y)f(-y)=f(-y)^{2}$, or $f(y)=f(-y)=0$. Otherwise, we divide both sides by $f(y)$ to get $f(y)=f(-y)$. If $y=0$, we obviously have $f(0)=f(0)$. Thus, the function is even. . Step 3: $y=-x \implies 2f(4x)(f(x)-x^{2})=0$. Thus, $\forall x$, we have $f(4x)=0$ or $f(x)=x^{2}$.

Step 4: We now assume $f(x) \not = 0$, $x\not = 0$. We have $f(\frac{x}{4})=\frac{x^{2}}{16}$. Now, setting $x=y=\frac{x}{4}$, we have $f(\frac{x}{2})=\frac{x^{2}}{4}$ or $f(\frac{x}{2})=0$. The former implies that $f(x)=0$ or $x^{2}$. The latter implies that $f(x)=0$ or $f(x)=\frac{x^{2}}{2}$. Assume the latter. $y=-2x \implies -\frac{3y^{2}}{2}f(7y)-{2y^{2}}f(5y)=\frac{x^{2}}{2}$. Clearly, this implies that $f(x)$ is negative for some $m$. Now, we have $f(\frac{m}{4})=\frac{m^{2}}{16} \implies f(\frac{m}{2})=0,\frac{m^{2}}{4} \implies f(m) \geq 0$, which is a contradiction. Thus, $\forall x$$f(x)=0$ or $f(x)=x^{2}$.

Step 5: We now assume $f(x)=0$, $f(y)=y^{2}$ for some $x,y \not = 0$. Let $m$ be sufficiently large integer, let $z=|4^{m}x|$ and take the absolute value of $y$(since the function is even). Choose $c$ such that $3z-c=y$. Note that we have $\frac{c}{z}$~$3$ and $\frac{y}{z}$~$0$. Note that $f(z)=0$. Now, $x=z, y=c \implies$ LHS is positive, as the second term is positive and the first term is nonnegative and thus the right term is equal to $(z+c)^{4}$~$256z^{4}$. Now if $f(z-3c)=0$, the second term of the LHS/RHS clearly ~0 as $m \to \infty$. if $f(z-3c)=0$, then we have LHS/RHS ~ $0$, otherwise, we have LHS/RHS~$\frac{8^{2}\cdot 3z^{4}}{256z^{4}}$~$\frac{3}{4}$, a contradiction, as we're clearly not dividing by $0$, and we should have LHS/RHS=1.


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

See also

2016 USAMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6
All USAMO Problems and Solutions
2016 USAJMO (ProblemsResources)
Preceded by
Problem 5
Last Problem
1 2 3 4 5 6
All USAJMO Problems and Solutions