Difference between revisions of "2005 Canadian MO Problems/Problem 4"
(Categorization) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
+ | |||
Let <math>ABC</math> be a triangle with circumradius <math>R</math>, perimeter <math>P</math> and area <math>K</math>. Determine the maximum value of <math>KP/R^3</math>. | Let <math>ABC</math> be a triangle with circumradius <math>R</math>, perimeter <math>P</math> and area <math>K</math>. Determine the maximum value of <math>KP/R^3</math>. | ||
+ | |||
==Solution== | ==Solution== | ||
+ | |||
==See also== | ==See also== | ||
+ | |||
*[[2005 Canadian MO]] | *[[2005 Canadian MO]] | ||
+ | |||
+ | |||
+ | [[Category:Olympiad Geometry Problems]] |
Revision as of 13:19, 4 September 2006
Problem
Let be a triangle with circumradius , perimeter and area . Determine the maximum value of .