Difference between revisions of "2009 AMC 8 Problems/Problem 17"
m (→Solution) |
(→Solution) |
||
Line 10: | Line 10: | ||
==Solution== | ==Solution== | ||
− | The prime factorization of <math>360=2^3 | + | The prime factorization of <math>360=2^3 \cdot 3^2 \cdot 5</math>. If a number is a perfect square, all of the exponents in its prime factorization must be even. Thus we need to multiply by a 2 and a 5, for a product of 10, which is the minimum possible value of x. Similarly, y can be found by making all the exponents divisible by 3, so the minimum possible value of <math>y</math> is <math>3 \cdot 5^2=75</math>. Thus, our answer is <math>x+y=10+75=\boxed{\textbf{(B)}\ 85}</math>. |
==See Also== | ==See Also== | ||
{{AMC8 box|year=2009|num-b=16|num-a=18}} | {{AMC8 box|year=2009|num-b=16|num-a=18}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 17:20, 15 September 2018
Problem
The positive integers and are the two smallest positive integers for which the product of and is a square and the product of and is a cube. What is the sum of and ?
Solution
The prime factorization of . If a number is a perfect square, all of the exponents in its prime factorization must be even. Thus we need to multiply by a 2 and a 5, for a product of 10, which is the minimum possible value of x. Similarly, y can be found by making all the exponents divisible by 3, so the minimum possible value of is . Thus, our answer is .
See Also
2009 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.