Difference between revisions of "1969 AHSME Problems/Problem 33"
Rockmanex3 (talk | contribs) m (→Solution) |
Treetor10145 (talk | contribs) m (Fixed Typo) |
||
Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
− | Let <math>S</math> be the first arithmetic sequence and <math>T</math> be the second arithmetic sequence. If <math>n = 1</math>, then <math>S_1:T_1 = 8:31</math>. Since <math>S_1</math> and <math>T_1</math> are just the first term, the first term of <math>S</math> is <math>8a</math> and the first term of <math>T</math> is <math>31a</math> for some <math>a</math>. If <math>n = 2</math>, then <math>S_2:T_2 = 15:35 = 3:7</math>, so the sum of the first two terms of <math>S</math> is <math>3b</math> and the sum of the first two terms of <math>T</math> is <math>7b</math> for some <math>b</math>. Thus, the second term of <math>S</math> is <math>3b-8a</math> and the second term of <math>T</math> is <math>7b - 31a</math>, so the common difference of <math>S</math> is <math>3b-16a</math> and the common difference of <math>T</math> is <math> | + | Let <math>S</math> be the first arithmetic sequence and <math>T</math> be the second arithmetic sequence. If <math>n = 1</math>, then <math>S_1:T_1 = 8:31</math>. Since <math>S_1</math> and <math>T_1</math> are just the first term, the first term of <math>S</math> is <math>8a</math> and the first term of <math>T</math> is <math>31a</math> for some <math>a</math>. If <math>n = 2</math>, then <math>S_2:T_2 = 15:35 = 3:7</math>, so the sum of the first two terms of <math>S</math> is <math>3b</math> and the sum of the first two terms of <math>T</math> is <math>7b</math> for some <math>b</math>. Thus, the second term of <math>S</math> is <math>3b-8a</math> and the second term of <math>T</math> is <math>7b - 31a</math>, so the common difference of <math>S</math> is <math>3b-16a</math> and the common difference of <math>T</math> is <math>7b-62a</math>. |
Thus, using the first terms and common differences, the sum of the first three terms of <math>S</math> equals <math>\tfrac{1}{2} \cdot 3(16a + 2(-16a + 3b))</math>, and the sum of the first three terms of <math>T</math> equals <math>\tfrac{1}{2} \cdot 3(62a + 2(-62a + 7b))</math>. That means | Thus, using the first terms and common differences, the sum of the first three terms of <math>S</math> equals <math>\tfrac{1}{2} \cdot 3(16a + 2(-16a + 3b))</math>, and the sum of the first three terms of <math>T</math> equals <math>\tfrac{1}{2} \cdot 3(62a + 2(-62a + 7b))</math>. That means |
Revision as of 21:34, 28 July 2018
Problem
Let and be the respective sums of the first terms of two arithmetic series. If for all , the ratio of the eleventh term of the first series to the eleventh term of the second series is:
Solution
Let be the first arithmetic sequence and be the second arithmetic sequence. If , then . Since and are just the first term, the first term of is and the first term of is for some . If , then , so the sum of the first two terms of is and the sum of the first two terms of is for some . Thus, the second term of is and the second term of is , so the common difference of is and the common difference of is .
Thus, using the first terms and common differences, the sum of the first three terms of equals , and the sum of the first three terms of equals . That means With the substitution, the common difference of is , and the common difference of is . That means the term of is , and the term of is . Thus, the ratio of the eleventh term of the first series to the eleventh term of the second series is .
See Also
1969 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 32 |
Followed by Problem 34 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.