Difference between revisions of "2005 AMC 12A Problems/Problem 13"

m (Solution)
m (Problem)
Line 2: Line 2:
 
In the five-sided star shown, the letters <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math> and <math>E</math> are replaced by the
 
In the five-sided star shown, the letters <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math> and <math>E</math> are replaced by the
 
numbers 3, 5, 6, 7 and 9, although not necessarily in that order. The sums of the
 
numbers 3, 5, 6, 7 and 9, although not necessarily in that order. The sums of the
numbers at the ends of the line segments <math>\overline{AB}</math>, <math>\overline{BC}</math>, <math>\overline{CD}</math>, <math>\overline{CE}</math>, and <math>\overline{EA}</math> form an
+
numbers at the ends of the line segments <math>\overline{AB}</math>, <math>\overline{BC}</math>, <math>\overline{CD}</math>, <math>\overline{DE}</math>, and <math>\overline{EA}</math> form an
 
arithmetic sequence, although not necessarily in that order. What is the middle
 
arithmetic sequence, although not necessarily in that order. What is the middle
 
term of the arithmetic sequence?
 
term of the arithmetic sequence?

Revision as of 17:45, 17 July 2018

Problem

In the five-sided star shown, the letters $A$, $B$, $C$, $D$ and $E$ are replaced by the numbers 3, 5, 6, 7 and 9, although not necessarily in that order. The sums of the numbers at the ends of the line segments $\overline{AB}$, $\overline{BC}$, $\overline{CD}$, $\overline{DE}$, and $\overline{EA}$ form an arithmetic sequence, although not necessarily in that order. What is the middle term of the arithmetic sequence?

[asy] draw((0,0)--(0.5,1.54)--(1,0)--(-0.31,0.95)--(1.31,0.95)--cycle); label("$A$",(0.5,1.54),N); label("$B$",(1,0),SE); label("$C$",(-0.31,0.95),W); label("$D$",(1.31,0.95),E); label("$E$",(0,0),SW); [/asy]

$(\mathrm {A}) \ 9 \qquad (\mathrm {B}) \ 10 \qquad (\mathrm {C})\ 11 \qquad (\mathrm {D}) \ 12 \qquad (\mathrm {E})\ 13$

Solution


$(A+B) + (B+C) + (C+D) + (D+E) + (E+A) = 2(A+B+C+D+E)$ (i.e., each number is counted twice). The sum $A + B + C + D + E$ will always be $3 + 5 + 6 + 7 + 9 = 30$, so the arithmetic sequence has a sum of $2 \cdot 30 = 60$. The middle term must be the average of the five numbers, which is $\frac{60}{5} = 12 \Longrightarrow \mathrm{(D)}$.

See also

2005 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png