Difference between revisions of "2007 iTest Problems/Problem 16"
Rockmanex3 (talk | contribs) |
Rockmanex3 (talk | contribs) (Graph for Problem 16) |
||
(One intermediate revision by the same user not shown) | |||
Line 24: | Line 24: | ||
* For points on the axes, there are <math>10</math> points on each ray plus the origin, making a total of <math>41</math> points. | * For points on the axes, there are <math>10</math> points on each ray plus the origin, making a total of <math>41</math> points. | ||
− | * For points not on the axes, [[symmetry]] can be used by focusing on one quadrant then multiplying by four because the equation is a [[circle]] where the center is the origin. Because the points are within the circle, <math>x^2 + y^2 \le 100</math>. If <math>x = 9</math>, then<math>y \le 4</math>. If <math>x = 8</math>, then <math>y \le 6</math>. If <math>x = 7</math>, then <math>y \le 7</math>. If <math>x = 6</math> or <math>x = 5</math>, then <math>y \le 8</math>. Finally, if <math>x \le 4</math>, then <math>y \le 9</math>. Altogether, there are a total of <math>9(4) + 8(2) + 7 + 6 + 4 = 69</math> points in the first quadrant, so there are a total of <math>69 \cdot 4 = 276</math> points not on the coordinate axes. | + | * For points not on the axes, [[symmetry]] can be used by focusing on one quadrant then multiplying by four because the equation is a [[circle]] where the center is the origin. Because the points are within the circle, <math>x^2 + y^2 \le 100</math>. If <math>x = 9</math>, then <math>y \le 4</math>. If <math>x = 8</math>, then <math>y \le 6</math>. If <math>x = 7</math>, then <math>y \le 7</math>. If <math>x = 6</math> or <math>x = 5</math>, then <math>y \le 8</math>. Finally, if <math>x \le 4</math>, then <math>y \le 9</math>. Altogether, there are a total of <math>9(4) + 8(2) + 7 + 6 + 4 = 69</math> points in the first quadrant, so there are a total of <math>69 \cdot 4 = 276</math> points not on the coordinate axes. |
− | In total, there are <math>276 + 41 = \boxed{317}</math> points within the circle. | + | <asy> |
+ | |||
+ | import graph; size(9.22 cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; | ||
+ | real xmin=-1.2,xmax=10.2,ymin=-1.2,ymax=10.2; | ||
+ | pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0); | ||
+ | |||
+ | /*grid*/ pen gs=linewidth(0.7)+cqcqcq+linetype("2 2"); real gx=1,gy=1; | ||
+ | for(real i=ceil(xmin/gx)*gx;i<=floor(xmax/gx)*gx;i+=gx) draw((i,ymin)--(i,ymax),gs); for(real i=ceil(ymin/gy)*gy;i<=floor(ymax/gy)*gy;i+=gy) draw((xmin,i)--(xmax,i),gs); | ||
+ | Label laxis; laxis.p=fontsize(10); | ||
+ | xaxis(xmin,xmax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); yaxis(ymin,ymax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | |||
+ | draw(Arc((0,0),10,-5,95)); | ||
+ | for (int i=1; i < 10; ++i) | ||
+ | { | ||
+ | for (int j=1; j < 10; ++j) | ||
+ | { | ||
+ | if (i*i + j*j <= 100) | ||
+ | { | ||
+ | dot((i,j)); | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | |||
+ | </asy> | ||
+ | |||
+ | In total, there are <math>276 + 41 = \boxed{\textbf{(M) } 317}</math> points within the circle. | ||
==See Also== | ==See Also== |
Latest revision as of 19:28, 17 June 2018
Problem
How many lattice points lie within or on the border of the circle in the -plane defined by the equation
Solution
Use casework to divide the problem into two cases -- points on the coordinate axes and points not on the coordinate axes.
- For points on the axes, there are points on each ray plus the origin, making a total of points.
- For points not on the axes, symmetry can be used by focusing on one quadrant then multiplying by four because the equation is a circle where the center is the origin. Because the points are within the circle, . If , then . If , then . If , then . If or , then . Finally, if , then . Altogether, there are a total of points in the first quadrant, so there are a total of points not on the coordinate axes.
In total, there are points within the circle.
See Also
2007 iTest (Problems, Answer Key) | ||
Preceded by: Problem 15 |
Followed by: Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4 |