Difference between revisions of "2005 AMC 12A Problems/Problem 15"
(→Solution 4) |
(→Solution 4) |
||
Line 64: | Line 64: | ||
dotfactor=3; | dotfactor=3; | ||
pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0); | pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0); | ||
− | pair D=dir(aCos(C.x)), | + | pair D=dir(aCos(C.x)), e=(-D.x,-D.y); |
+ | pair H=(e.x,0); | ||
draw(A--B--D--cycle); | draw(A--B--D--cycle); | ||
− | draw(D-- | + | draw(D--e--C); |
draw(unitcircle,white); | draw(unitcircle,white); | ||
drawline(D,C); | drawline(D,C); | ||
Line 72: | Line 73: | ||
clip(unitcircle); | clip(unitcircle); | ||
draw(unitcircle); | draw(unitcircle); | ||
− | label("$E$", | + | label("$E$",e,SSE); |
label("$B$",B,NE); | label("$B$",B,NE); | ||
label("$A$",A,W); | label("$A$",A,W); | ||
label("$D$",D,NNW); | label("$D$",D,NNW); | ||
label("$C$",C,SW); | label("$C$",C,SW); | ||
− | label("$H$", | + | label("$H$",H,SE); |
− | draw( | + | draw(e--H,dashed); |
label("O",(0,0),NE); | label("O",(0,0),NE); | ||
label("1",(C--O),N); | label("1",(C--O),N); | ||
+ | label("1",(H--O),S); | ||
label("2",(A--C),N); | label("2",(A--C),N); | ||
label("3",(O--D),NE); | label("3",(O--D),NE); | ||
− | label("3",(O-- | + | label("3",(O--e),NE); |
label("$2\sqrt{2}$",(D--C),NW); | label("$2\sqrt{2}$",(D--C),NW); | ||
− | draw(rightanglemark( | + | label("$2\sqrt{2}$",(H--e),E) |
+ | draw(rightanglemark(e,(e.x,0),A,2)); | ||
draw(rightanglemark(D,C,B,2));</asy> | draw(rightanglemark(D,C,B,2));</asy> | ||
Revision as of 21:37, 13 June 2018
Contents
Problem
Let be a diameter of a circle and be a point on with . Let and be points on the circle such that and is a second diameter. What is the ratio of the area of to the area of ?
Solution
Solution 1
Notice that the bases of both triangles are diameters of the circle. Hence the ratio of the areas is just the ratio of the heights of the triangles, or ( is the foot of the perpendicular from to ).
Call the radius . Then , . Using the Pythagorean Theorem in , we get .
Now we have to find . Notice , so we can write the proportion:
By the Pythagorean Theorem in , we have .
Our answer is .
Solution 2
Let the center of the circle be .
Note that .
is midpoint of .
is midpoint of Area of Area of Area of Area of .
Solution 3
Let be the radius of the circle. Note that so .
By Power of a Point Theorem, , and thus
Then the area of is . Similarly, the area of is , so the desired ratio is
Solution 4
unitsize(2.5cm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3; pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0); pair D=dir(aCos(C.x)), e=(-D.x,-D.y); pair H=(e.x,0); draw(A--B--D--cycle); draw(D--e--C); draw(unitcircle,white); drawline(D,C); dot(O); clip(unitcircle); draw(unitcircle); label("$E$",e,SSE); label("$B$",B,NE); label("$A$",A,W); label("$D$",D,NNW); label("$C$",C,SW); label("$H$",H,SE); draw(e--H,dashed); label("O",(0,0),NE); label("1",(C--O),N); label("1",(H--O),S); label("2",(A--C),N); label("3",(O--D),NE); label("3",(O--e),NE); label("$2\sqrt{2}$",(D--C),NW); label("$2\sqrt{2}$",(H--e),E) draw(rightanglemark(e,(e.x,0),A,2)); draw(rightanglemark(D,C,B,2)); (Error making remote request. Unknown error_msg)
Let the center of the circle be . Without loss of generality, let the radius of the circle be equal to . Thus, and . As a consequence of , and . Also, we know that and are both equal to due to the fact that they are both radii. Thus from the Pythagorean Theorem, we have DC being equal to or . Now we know that the area of is equal to or . Know we need to find the area of . By simple inspection /cong due to angles being equal and CPCTC. Thus and
See also
2005 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.