Difference between revisions of "1969 AHSME Problems/Problem 11"
(Created page with "== Problem == Given points <math>P(-1,-2)</math> and <math>Q(4,2)</math> in the <math>xy</math>-plane; point <math>R(1,m)</math> is taken so that <math>PR+RQ</math> is a minimum...") |
Rockmanex3 (talk | contribs) (Solution to Problem 11) |
||
(One intermediate revision by one other user not shown) | |||
Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
− | <math>\ | + | <asy> |
+ | |||
+ | import graph; size(7.22 cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; | ||
+ | real xmin=-2.2,xmax=6.2,ymin=-4.2,ymax=4.2; | ||
+ | pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0); | ||
+ | |||
+ | /*grid*/ pen gs=linewidth(0.7)+cqcqcq+linetype("2 2"); real gx=1,gy=1; | ||
+ | for(real i=ceil(xmin/gx)*gx;i<=floor(xmax/gx)*gx;i+=gx) draw((i,ymin)--(i,ymax),gs); for(real i=ceil(ymin/gy)*gy;i<=floor(ymax/gy)*gy;i+=gy) draw((xmin,i)--(xmax,i),gs); | ||
+ | Label laxis; laxis.p=fontsize(10); | ||
+ | xaxis(xmin,xmax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); yaxis(ymin,ymax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | |||
+ | dot((-1,-2)); | ||
+ | label("P",(-1,-2),NW); | ||
+ | dot((4,2)); | ||
+ | label("Q",(4,2),NW); | ||
+ | draw((-1,-2)--(4,2),dotted); | ||
+ | |||
+ | dot((1,-0.4)); | ||
+ | label("R",(1,-0.4),SE); | ||
+ | |||
+ | </asy> | ||
+ | By the [[Triangle Inequality]], <math>PR + QR \ge PR</math>, and equality holds if <math>R</math> is on <math>PQ</math>. The equation of the line with <math>P</math> and <math>Q</math> is <math>y = \frac{4}{5}x - \frac{6}{5}</math>, so point <math>R</math> is <math>(1,-\frac{2}{5})</math>. Thus, <math>m = \boxed{\textbf{(B) } -\frac{2}{5}}</math>. | ||
== See also == | == See also == | ||
− | {{AHSME box|year=1969|num-b=10|num-a=12}} | + | {{AHSME 35p box|year=1969|num-b=10|num-a=12}} |
[[Category: Introductory Geometry Problems]] | [[Category: Introductory Geometry Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 03:13, 7 June 2018
Problem
Given points and in the -plane; point is taken so that is a minimum. Then equals:
Solution
By the Triangle Inequality, , and equality holds if is on . The equation of the line with and is , so point is . Thus, .
See also
1969 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.