Difference between revisions of "1963 AHSME Problems/Problem 9"

(Solution to Problem 9)
 
m (Solution)
 
Line 11: Line 11:
  
 
==Solution==
 
==Solution==
By the [[Binomial Theorem]], each term of the expansion is <math>\binom{7}{n}(a)^{7-n}(frac{-1}{\sqrt{a}})^n</math>.
+
By the [[Binomial Theorem]], each term of the expansion is <math>\binom{7}{n}(a)^{7-n}(\frac{-1}{\sqrt{a}})^n</math>.
  
 
We want the exponent of <math>a</math> to be <math>-\frac{1}{2}</math>, so  
 
We want the exponent of <math>a</math> to be <math>-\frac{1}{2}</math>, so  
Line 23: Line 23:
  
 
The answer is <math>\boxed{\textbf{(C)}}</math>.
 
The answer is <math>\boxed{\textbf{(C)}}</math>.
 
 
  
 
==See Also==
 
==See Also==

Latest revision as of 14:40, 4 June 2018

Problem 9

In the expansion of $\left(a-\dfrac{1}{\sqrt{a}}\right)^7$ the coefficient of $a^{-\dfrac{1}{2}}$ is:

$\textbf{(A)}\ -7 \qquad \textbf{(B)}\ 7 \qquad \textbf{(C)}\ -21 \qquad \textbf{(D)}\ 21 \qquad \textbf{(E)}\ 35$


Solution

By the Binomial Theorem, each term of the expansion is $\binom{7}{n}(a)^{7-n}(\frac{-1}{\sqrt{a}})^n$.

We want the exponent of $a$ to be $-\frac{1}{2}$, so \[(7-n)-\frac{1}{2}n=-\frac{1}{2}\] \[-\frac{3}{2}n = -\frac{15}{2}\] \[n = 5\]

If $n=5$, then the corresponding term is \[\binom{7}{5}(a)^{2}(\frac{-1}{\sqrt{a}})^5\] \[-21a^{-\frac{1}{2}}\]

The answer is $\boxed{\textbf{(C)}}$.

See Also

1963 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png