Difference between revisions of "2008 AIME II Problems/Problem 7"

(Solution 4)
(Solution 3)
Line 36: Line 36:
 
We are trying to find <math> -(r^3 + s^3 + t^3)</math>.
 
We are trying to find <math> -(r^3 + s^3 + t^3)</math>.
 
Substituting:
 
Substituting:
<cmath> -(r^3 + s^3 + t^3) = -3srt = \frac{-2008*3}{8} = \boxed{753}</cmath>.
+
<cmath> -(r^3 + s^3 + t^3) = -3srt = \frac{-2008*3}{8} = \boxed{753}.</cmath>
  
 
=== Solution 4 ===
 
=== Solution 4 ===

Revision as of 09:38, 31 May 2018

Problem

Let $r$, $s$, and $t$ be the three roots of the equation \[8x^3 + 1001x + 2008 = 0.\] Find $(r + s)^3 + (s + t)^3 + (t + r)^3$.

Solution

Solution 1

By Vieta's formulas, we have $r+s+t = 0$, and so the desired answer is $(r+s)^3 + (s+t)^3 + (t+r)^3 = (0-t)^3 + (0-r)^3 + (0-s)^3 = -(r^3 + s^3 + t^3)$. Additionally, using the factorization \[r^3 + s^3 + t^3 - 3rst = (r+s+t)(r^2 + s^2 + t^2 - rs - st - tr) = 0\] we have that $r^3 + s^3 + t^3 = 3rst$. By Vieta's again, $rst = \frac{-2008}8 = -251 \Longrightarrow -(r^3 + s^3 + t^3) = -3rst = \boxed{753}.$

Solution 2

Vieta's formulas gives $r + s + t = 0$. Since $r$ is a root of the polynomial, $8r^3 + 1001r + 2008 = 0\Longleftrightarrow - 8r^3 = 1001r + 2008$, and the same can be done with $s,\ t$. Therefore, we have \begin{align*}8\{(r + s)^3 + (s + t)^3 + (t + r)^3\} &= - 8(r^3 + s^3 + t^3)\\ &= 1001(r + s + t) + 2008\cdot 3 = 3\cdot 2008\end{align*}yielding the answer $\boxed{753}$.

Also, Newton's Sums yields an answer through the application. http://www.artofproblemsolving.com/Wiki/index.php/Newton's_Sums

Solution 3

Expanding, you get: \[r^3 + 3r^2s + 3s^2r +s^3 +\] \[s^3 + 3s^2t + 3t^2s +t^3 +\] \[r^3 + 3r^2t + 3t^2r +t^3\] \[= 2r^3 + 2s^3 + 2t^3 + 3r^2s + 3s^2r + 3s^2t + 3t^2s + 3r^2t + 3t^2r\] This looks similar to $(r+s+t)^3 = r^3 + s^3 + t^3 + 3r^2s + 3s^2r + 3s^2t + 3t^2s + 3r^2t + 3t^2r + rst$ Substituting: \[(r+s+t)^3 - 6rst + r^3+s^3+t^3 = (r + s)^3 + (s + t)^3 + (t + r)^3\] Since $r+s+t = 0$, \[(r+s)^3 + (s+t)^3 + (t+r)^3 = (0-t)^3 + (0-r)^3 + (0-s)^3 = -(r^3 + s^3 + t^3)\] Substituting, we get \[(r+s+t)^3 - 6rst + r^3+s^3+t^3 =  -(r^3 + s^3 + t^3)\] or, \[0^3 - 6rst + r^3+s^3+t^3 =  -(r^3 + s^3 + t^3) \implies 2(r^3 + s^3 + t^3) = 6rst\] We are trying to find $-(r^3 + s^3 + t^3)$. Substituting: \[-(r^3 + s^3 + t^3) = -3srt = \frac{-2008*3}{8} = \boxed{753}.\]

Solution 4

Write $(r+s)^3+(s+t)^3+(t+r)^3=-(r^3+s^3+t^3)$ and let $f(x)=8x^3+1001x+2008$. Then \[f(r)+f(s)+f(t)=8(r^3+s^3+t^3)+1001(r+s+t)+6024=8(r^3+s^3+t^3)+6024=0.\] Solving for $r^3+s^3+t^3$ and negating the result yields the answer $\boxed{753}.$

See also

2008 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png