Difference between revisions of "2017 AIME I Problems/Problem 14"

m (Problem)
m (Fixed the solution)
Line 23: Line 23:
 
so <math>a^{128} = 64 \implies a = 2^{\frac{3}{64}}</math>. Specifically,
 
so <math>a^{128} = 64 \implies a = 2^{\frac{3}{64}}</math>. Specifically,
  
<cmath>\log_a(y) = \frac{\log_2(y)}{\log_2(a)} = \frac{64}{3}\log_2(y)</cmath>
+
<cmath>\log_a(x) = \frac{\log_2(x)}{\log_2(a)} = \frac{64}{3}\log_2(x)</cmath>
  
 
so we have that
 
so we have that
  
<cmath>256 = \log_a(\log_a(y)) = \frac{64}{3}\log_2\left(\frac{64}{3}\log_2(x)\right)</cmath>
+
<cmath>256 = \log_a(\log_a()) = \frac{64}{3}\log_2\left(\frac{64}{3}\log_2(x)\right)</cmath>
  
 
<cmath>12 = \log_2\left(\frac{64}{3}\log_2(x)\right)</cmath>
 
<cmath>12 = \log_2\left(\frac{64}{3}\log_2(x)\right)</cmath>

Revision as of 12:04, 20 April 2018

Problem 14

Let $a > 1$ and $x > 1$ satisfy $\log_a(\log_a(\log_a 2) + \log_a 24 - 128) = 128$ and $\log_a(\log_a x) = 256$. Find the remainder when $x$ is divided by $1000$.

Solution

The first condition implies

\[a^{128} = \log_a\log_a 2 + \log_a 24 - 128\]

\[128+a^{128} = \log_a\log_a 2^{24}\]

\[a^{a^{128}a^{a^{128}}} = 2^{24}\]

\[\left(a^{a^{128}}\right)^{\left(a^{a^{128}}\right)} = 2^{24} = 8^8\]

So $a^{a^{128}} = 8$.

Putting each side to the power of $128$:

\[\left(a^{128}\right)^{\left(a^{128}\right)} = 8^{128} = 64^{64},\]

so $a^{128} = 64 \implies a = 2^{\frac{3}{64}}$. Specifically,

\[\log_a(x) = \frac{\log_2(x)}{\log_2(a)} = \frac{64}{3}\log_2(x)\]

so we have that

\[256 = \log_a(\log_a()) = \frac{64}{3}\log_2\left(\frac{64}{3}\log_2(x)\right)\]

\[12 = \log_2\left(\frac{64}{3}\log_2(x)\right)\]

\[2^{12} = \frac{64}{3}\log_2(x)\]

\[192 = \log_2(x)\]

\[x = 2^{192}\]

We only wish to find $x\bmod 1000$. To do this, we note that $x\equiv 0\bmod 8$ and now, by the Chinese Remainder Theorem, wish only to find $x\bmod 125$. By Euler's Theorem:

\[2^{\phi(125)} = 2^{100} \equiv 1\bmod 125\]

so

\[2^{192} \equiv \frac{1}{2^8} \equiv \frac{1}{256} \equiv \frac{1}{6} \bmod 125\]

so we only need to find the inverse of $6 \bmod 125$. It is easy to realize that $6\cdot 21 = 126 \equiv 1\bmod 125$, so

\[x\equiv 21\bmod 125, x\equiv 0\bmod 8.\]

Using CRT, we get that $x\equiv \boxed{896}\bmod 1000$, finishing the solution.

See also

2017 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png