Difference between revisions of "1986 AHSME Problems/Problem 13"

(Created page with "==Problem== A parabola <math>y = ax^{2} + bx + c</math> has vertex <math>(4,2)</math>. If <math>(2,0)</math> is on the parabola, then <math>abc</math> equals <math>\textbf{(A)}...")
 
(Added a solution with explanation)
 
Line 10: Line 10:
  
 
==Solution==
 
==Solution==
 
+
Consider the quadratic in completed square form: it must be <math>y=a(x-4)^{2}+2</math>. Now substitute <math>x=2</math> and <math>y=0</math> to give <math>a=-\frac{1}{2}</math>. Now expanding gives <math>y=-\frac{1}{2}x^{2}+4x-6</math>, so the product is <math>-\frac{1}{2} \cdot 4 \cdot -6  = 3 \cdot 4 = 12</math>, which is <math>\boxed{E}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 17:35, 1 April 2018

Problem

A parabola $y = ax^{2} + bx + c$ has vertex $(4,2)$. If $(2,0)$ is on the parabola, then $abc$ equals

$\textbf{(A)}\ -12\qquad \textbf{(B)}\ -6\qquad \textbf{(C)}\ 0\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ 12$

Solution

Consider the quadratic in completed square form: it must be $y=a(x-4)^{2}+2$. Now substitute $x=2$ and $y=0$ to give $a=-\frac{1}{2}$. Now expanding gives $y=-\frac{1}{2}x^{2}+4x-6$, so the product is $-\frac{1}{2} \cdot 4 \cdot -6  = 3 \cdot 4 = 12$, which is $\boxed{E}$.

See also

1986 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png