Difference between revisions of "2015 AIME I Problems/Problem 13"
m (→Solution 4) |
(→Solution 4) |
||
Line 63: | Line 63: | ||
Since <math>\sin\theta=\cos(90^{\circ}-\theta)</math>, we can multiply both sides by <math>\frac{\sqrt{2}}{2}</math> to get <math>\sqrt{\frac{1}{2p}}=\prod_{k=1}^{23} \sin(2k-1)^\circ\cos(2k-1)^\circ</math>. | Since <math>\sin\theta=\cos(90^{\circ}-\theta)</math>, we can multiply both sides by <math>\frac{\sqrt{2}}{2}</math> to get <math>\sqrt{\frac{1}{2p}}=\prod_{k=1}^{23} \sin(2k-1)^\circ\cos(2k-1)^\circ</math>. | ||
− | Using the | + | Using the double-angle identity <math>\sin2\theta=2\sin\theta\cos\theta</math>, we get <math>\sqrt{\frac{1}{2p}}=\frac{1}{2^{23}}\prod_{k=1}^{23} \sin(4k-2)^\circ</math>. |
Note that the right-hand side is equal to <math>\frac{1}{2^{23}}\prod_{k=1}^{45} \sin(2k)^\circ\div \prod_{k=1}^{22} \sin(4k)^\circ</math>, which is equal to <math>\frac{1}{2^{23}}\prod_{k=1}^{45} \sin(2k)^\circ\div \prod_{k=1}^{22} 2\sin(2k)^\circ\cos(2k)^\circ</math>, again, from using our double-angle identity. | Note that the right-hand side is equal to <math>\frac{1}{2^{23}}\prod_{k=1}^{45} \sin(2k)^\circ\div \prod_{k=1}^{22} \sin(4k)^\circ</math>, which is equal to <math>\frac{1}{2^{23}}\prod_{k=1}^{45} \sin(2k)^\circ\div \prod_{k=1}^{22} 2\sin(2k)^\circ\cos(2k)^\circ</math>, again, from using our double-angle identity. |
Revision as of 14:26, 3 March 2018
Contents
Problem
With all angles measured in degrees, the product , where
and
are integers greater than 1. Find
.
Solution
Solution 1
Let . Then from the identity
we deduce that (taking absolute values and noticing
)
But because
is the reciprocal of
and because
, if we let our product be
then
because
is positive in the first and second quadrants. Now, notice that
are the roots of
Hence, we can write
, and so
It is easy to see that
and that our answer is
.
Solution 2
Let
because of the identity
we want
Thus the answer is
Solution 3
Similar to Solution , so we use
and we find that:
Now we can cancel the sines of the multiples of
:
So
and we can apply the double-angle formula again:
Of course,
is missing, so we multiply it to both sides:
Now isolate the product of the sines:
And the product of the squares of the cosecants as asked for by the problem is the square of the inverse of this number:
The answer is therefore
.
Solution 4
Let .
Then, .
Since , we can multiply both sides by
to get
.
Using the double-angle identity , we get
.
Note that the right-hand side is equal to , which is equal to
, again, from using our double-angle identity.
Putting this back into our equation and simplifying gives us .
Using the fact that again, our equation simplifies to
, and since
, it follows that
, which implies
. Thus,
.
See Also
2015 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.