Difference between revisions of "2018 AMC 10A Problems/Problem 25"
(→Solution 3) |
|||
Line 5: | Line 5: | ||
<math>\textbf{(A)} \text{ 12} \qquad \textbf{(B)} \text{ 14} \qquad \textbf{(C)} \text{ 16} \qquad \textbf{(D)} \text{ 18} \qquad \textbf{(E)} \text{ 20}</math> | <math>\textbf{(A)} \text{ 12} \qquad \textbf{(B)} \text{ 14} \qquad \textbf{(C)} \text{ 16} \qquad \textbf{(D)} \text{ 18} \qquad \textbf{(E)} \text{ 20}</math> | ||
− | == Solution | + | == Solution == |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Notice that <math>(0.\overline{3})^2 = 0.\overline{1}</math> and <math>(0.\overline{6})^2 = 0.\overline{4}</math>. Setting <math>a = 3</math> and <math>c = 1</math>, we see <math>b = 2</math> works for all possible values of <math>n</math>. Similarly, if <math>a = 6</math> and <math>c = 4</math>, then <math>b = 8</math> works for all possible values of <math>n</math>. The second solution yields a greater sum of <math>\boxed{\textbf{(D)} \text{ 18}}</math>. | Notice that <math>(0.\overline{3})^2 = 0.\overline{1}</math> and <math>(0.\overline{6})^2 = 0.\overline{4}</math>. Setting <math>a = 3</math> and <math>c = 1</math>, we see <math>b = 2</math> works for all possible values of <math>n</math>. Similarly, if <math>a = 6</math> and <math>c = 4</math>, then <math>b = 8</math> works for all possible values of <math>n</math>. The second solution yields a greater sum of <math>\boxed{\textbf{(D)} \text{ 18}}</math>. | ||
Revision as of 12:01, 19 February 2018
Problem
For a positive integer and nonzero digits , , and , let be the -digit integer each of whose digits is equal to ; let be the -digit integer each of whose digits is equal to , and let be the -digit (not -digit) integer each of whose digits is equal to . What is the greatest possible value of for which there are at least two values of such that ?
Solution
Notice that and . Setting and , we see works for all possible values of . Similarly, if and , then works for all possible values of . The second solution yields a greater sum of .
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.