Difference between revisions of "2018 AMC 10A Problems/Problem 10"
m (→Solution 2 (bad)) |
Kevinmathz (talk | contribs) |
||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solutions== | ==Solutions== | ||
=== Solution 1=== | === Solution 1=== | ||
Line 20: | Line 11: | ||
Let <math>u=\sqrt{49-x^2}</math>, and let <math>v=\sqrt{25-x^2}</math>. Then <math>v=\sqrt{u^2-24}</math>. Substituting, we get <math>u-\sqrt{u^2-24}=3</math>. Rearranging, we get <math>u-3=\sqrt{u^2-24}</math>. Squaring both sides and solving, we get <math>u=\frac{11}{2}</math> and <math>v=\frac{11}{2}-3=\frac{5}{2}</math>. Adding, we get that the answer is <math>\boxed{\textbf{(A) } 8}</math> | Let <math>u=\sqrt{49-x^2}</math>, and let <math>v=\sqrt{25-x^2}</math>. Then <math>v=\sqrt{u^2-24}</math>. Substituting, we get <math>u-\sqrt{u^2-24}=3</math>. Rearranging, we get <math>u-3=\sqrt{u^2-24}</math>. Squaring both sides and solving, we get <math>u=\frac{11}{2}</math> and <math>v=\frac{11}{2}-3=\frac{5}{2}</math>. Adding, we get that the answer is <math>\boxed{\textbf{(A) } 8}</math> | ||
− | == | + | ===Solution 3=== |
+ | |||
+ | Put the equations to one side. <math>\sqrt{49-x^2}-\sqrt{25-x^2}=3</math> can be changed into <math>\sqrt{49-x^2}=\sqrt{25-x^2}+3</math>. | ||
+ | |||
+ | We can square both sides, getting us <math>49-x^2=(25-x^2)+(3^2)+ 2\cdot 3 \cdot \sqrt{25-x^2}.</math> | ||
+ | |||
+ | That simplifies out to <math>15=6 \sqrt{25-x^2}.</math> Dividing both sides gets us <math>\frac{5}{2}=\sqrt{25-x^2}</math>. | ||
+ | |||
+ | Following that, we can square both sides again, resulting in the equation <math>\frac{25}{4}=25-x^2</math>. Simplifying that, we get <math>x^2 = \frac{75}{4}</math>. | ||
− | {{ | + | Substituting into the equation <math>\sqrt{49-x^2}+\sqrt{25-x^2}</math>, we get <math>\sqrt{49-\frac{75}{4}}+\sqrt{25-\frac{75}{4}}</math>. Immediately, we simplify into <math>\sqrt{\frac{121}{4}}+\sqrt{\frac{25}{4}}</math>. The two numbers inside the square roots are simplified to be <math>\frac{11}{2}</math> and <math>\frac{5}{2}</math>, so you add them up: <math>\frac{11}{2}+\frac{5}{2}=\boxed{\textbf{(A)8}}</math> |
− | {{ |
Revision as of 22:51, 9 February 2018
Solutions
Solution 1
In order to get rid of the square roots, we multiply by the conjugate. Its value is the solution.The terms cancel nicely.
Given that = 3,
Solution by PancakeMonster2004, explanations added by a1b2.
Solution 2 (bad)
Let , and let . Then . Substituting, we get . Rearranging, we get . Squaring both sides and solving, we get and . Adding, we get that the answer is
Solution 3
Put the equations to one side. can be changed into .
We can square both sides, getting us
That simplifies out to Dividing both sides gets us .
Following that, we can square both sides again, resulting in the equation . Simplifying that, we get .
Substituting into the equation , we get . Immediately, we simplify into . The two numbers inside the square roots are simplified to be and , so you add them up: