Difference between revisions of "2018 AMC 10A Problems/Problem 24"

(Solution 2)
(Solution 3)
Line 21: Line 21:
 
== Solution 3 ==
 
== Solution 3 ==
 
The area of <math>\bigtriangleup ABG</math> to the area of <math>\bigtriangleup ACG</math> is <math>5:1</math> by Law of Sines. So the area of <math>\bigtriangleup ABG</math> is <math>100</math>. Since <math>\overline{DE}</math> is the midsegment of <math>\bigtriangleup ABC</math>, so <math>\overline{DF}</math> is the midsegment of <math>\bigtriangleup ABG</math> . So the area of <math>\bigtriangleup ACG</math>  to the area of <math>\bigtriangleup ABG</math> is <math>1:4</math> , so the area of <math>\bigtriangleup ACG</math> is <math>25</math>, by similar triangles. Therefore the area of quad <math>FDBG</math> is <math>100-25=\boxed{75}</math>
 
The area of <math>\bigtriangleup ABG</math> to the area of <math>\bigtriangleup ACG</math> is <math>5:1</math> by Law of Sines. So the area of <math>\bigtriangleup ABG</math> is <math>100</math>. Since <math>\overline{DE}</math> is the midsegment of <math>\bigtriangleup ABC</math>, so <math>\overline{DF}</math> is the midsegment of <math>\bigtriangleup ABG</math> . So the area of <math>\bigtriangleup ACG</math>  to the area of <math>\bigtriangleup ABG</math> is <math>1:4</math> , so the area of <math>\bigtriangleup ACG</math> is <math>25</math>, by similar triangles. Therefore the area of quad <math>FDBG</math> is <math>100-25=\boxed{75}</math>
 +
(steakfails)
  
 
==See Also==
 
==See Also==

Revision as of 00:08, 9 February 2018

Problem

Triangle $ABC$ with $AB=50$ and $AC=10$ has area $120$. Let $D$ be the midpoint of $\overline{AB}$, and let $E$ be the midpoint of $\overline{AC}$. The angle bisector of $\angle BAC$ intersects $\overline{DE}$ and $\overline{BC}$ at $F$ and $G$, respectively. What is the area of quadrilateral $FDBG$?

$\textbf{(A) }60 \qquad \textbf{(B) }65 \qquad \textbf{(C) }70 \qquad \textbf{(D) }75 \qquad \textbf{(E) }80 \qquad$

Solution

By angle bisector theorem, $BG=\frac{5a}{6}$. By similar triangles, $DF=\frac{5a}{12}$, and the height of this trapezoid is $\frac{h}{2}$, where $h$ is the length of the altitude to $BC$. Then $\frac{ah}{2}=120$ and we wish to compute $\frac{5a}{8}\cdot\frac{h}{2}=\boxed{75}$.

Solution 2

$\overline{DE}$ is midway from $A$ to $\overline{BC}$, and $DE = \frac{BC}{2}$. Therefore, $\bigtriangleup ADE$ is a quarter of the area of $\bigtriangleup ABC$, which is $30$. Subsequently, we can compute the area of quadrilateral $BDEC$ to be $120 - 90 = 30$. Using the angle bisector theorem in the same fashion as the previous problem, we get that $\overline{BG}$ is $5$ times the length of $\overline{GC}$. We want the larger piece, as described by the problem. Because the heights are identical, one area is $5$ times the other, and $\frac{5}{6} \cdot 90 = \boxed{75}$.

Solution 3

The area of $\bigtriangleup ABG$ to the area of $\bigtriangleup ACG$ is $5:1$ by Law of Sines. So the area of $\bigtriangleup ABG$ is $100$. Since $\overline{DE}$ is the midsegment of $\bigtriangleup ABC$, so $\overline{DF}$ is the midsegment of $\bigtriangleup ABG$ . So the area of $\bigtriangleup ACG$ to the area of $\bigtriangleup ABG$ is $1:4$ , so the area of $\bigtriangleup ACG$ is $25$, by similar triangles. Therefore the area of quad $FDBG$ is $100-25=\boxed{75}$ (steakfails)

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png