Difference between revisions of "2018 AMC 10A Problems/Problem 19"
(→Solution) |
(→Solution) |
||
Line 19: | Line 19: | ||
We see that the unit digit of <math>7^y</math>, for some integer <math>y</math>, will only be <math>1</math> when <math>y</math> is a multiple of <math>4</math>. This is exactly the same conditions as our last case with <math>3</math> so the probability of this case is also <math>\frac{1}{20}</math>. | We see that the unit digit of <math>7^y</math>, for some integer <math>y</math>, will only be <math>1</math> when <math>y</math> is a multiple of <math>4</math>. This is exactly the same conditions as our last case with <math>3</math> so the probability of this case is also <math>\frac{1}{20}</math>. | ||
Since <math>5*5=25</math> and <math>25</math> ends in <math>5</math>, the units digit of <math>5^w</math>, for some integer, <math>w</math> will always be <math>5</math>. Thus, the probability in this case is <math>0</math>. | Since <math>5*5=25</math> and <math>25</math> ends in <math>5</math>, the units digit of <math>5^w</math>, for some integer, <math>w</math> will always be <math>5</math>. Thus, the probability in this case is <math>0</math>. | ||
− | The last case we need to consider is when the number <math>9</math> is chosen from <math>A</math>. This happens with probability <math>\frac{1}{5}</math>. We list out the | + | The last case we need to consider is when the number <math>9</math> is chosen from <math>A</math>. This happens with probability <math>\frac{1}{5}</math>. We list out the repeating units digit for <math>9</math> as we have done for <math>3</math> and <math>7</math>: |
<cmath>9*9=1</cmath> | <cmath>9*9=1</cmath> | ||
<cmath>1*9=9</cmath> | <cmath>1*9=9</cmath> |
Revision as of 15:38, 8 February 2018
A number is randomly selected from the set , and a number is randomly selected from . What is the probability that has a units digit of ?
Solution
Since we only care about the unit digit, our set can be turned into . Call this set and call set . Let's do casework on the element of that we choose. Since , any number from can be paired with to make have a units digit of . Therefore, the probability of this case happening is since there is a chance that the number is selected from . Let us consider the case where the number is selected from . Let's look at the unit digit when we repeatedly multiply the number by itself: We see that the unit digit of , for some integer , will only be when is a multiple of . Now, let's count how many numbers in are divisible by . This can be done by simply listing: There are numbers in divisible by out of the total numbers. Therefore, the probability that is picked from and a number divisible by is picked from is . Similarly, we can look at the repeating units digit for : We see that the unit digit of , for some integer , will only be when is a multiple of . This is exactly the same conditions as our last case with so the probability of this case is also . Since and ends in , the units digit of , for some integer, will always be . Thus, the probability in this case is . The last case we need to consider is when the number is chosen from . This happens with probability . We list out the repeating units digit for as we have done for and : We see that the units digit of , for some integer , is only when is an even number. From the numbers in , we see that exactly half of them are even. The probability in this case is Finally, we can ad all of our probabilities together to get
~Nivek