Difference between revisions of "2011 AMC 12B Problems/Problem 21"
Claudeaops (talk | contribs) (sidenote) |
(→Solution) |
||
Line 8: | Line 8: | ||
Answer: (D) | Answer: (D) | ||
− | + | \frac{x + y}{2} = 10 a+b<math> for some </math>1\le a\le 9 <math>,</math>0\le b\le 9<math>. | |
− | <math>\sqrt{xy} = 10 b+a< | + | </math>\sqrt{xy} = 10 b+a<math> |
− | <math>100 a^2 + 20 ab + b^2 = \frac{x^2 + 2xy + y^2}{4}< | + | </math>100 a^2 + 20 ab + b^2 = \frac{x^2 + 2xy + y^2}{4}<math> |
− | <math>xy = 100b^2 + 20ab + a^2< | + | </math>xy = 100b^2 + 20ab + a^2<math> |
− | <math>\frac{x^2 + 2xy + y^2}{4} - xy = \frac{x^2 - 2xy + y^2}{4} = \left(\frac{x-y}{2}\right)^2 = 99 a^2 - 99 b^2 = 99(a^2 - b^2)< | + | </math>\frac{x^2 + 2xy + y^2}{4} - xy = \frac{x^2 - 2xy + y^2}{4} = \left(\frac{x-y}{2}\right)^2 = 99 a^2 - 99 b^2 = 99(a^2 - b^2)<math> |
<br /> | <br /> | ||
− | <math>|x-y| = 2\sqrt{99(a^2 - b^2)}< | + | </math>|x-y| = 2\sqrt{99(a^2 - b^2)}<math> |
− | Note that in order for x-y to be integer, <math>(a^2 - b^2)< | + | Note that in order for x-y to be integer, </math>(a^2 - b^2)<math> has to be </math>11n<math> for some perfect square </math>n<math>. Since </math>a<math> is at most </math>9<math>, </math>n = 1<math> or </math>4<math> |
− | If <math>n = 1< | + | If </math>n = 1<math>, </math>|x-y| = 66<math>, if </math>n = 4<math>, </math>|x-y| = 132<math>. In AMC, we are done. Otherwise, we need to show that </math>a^2 -b^2 = 44<math> is impossible. |
− | <math>(a-b)(a+b) = 44< | + | </math>(a-b)(a+b) = 44<math> -> </math>a-b = 1<math>, or </math>2<math> or </math>4<math> and </math>a+b = 44<math>, </math>22<math>, </math>11<math> respectively. And since </math>a+b \le 18<math>, </math>a+b = 11<math>, </math>a-b = 4<math>, but there is no integer solution for </math>a<math>, </math>b<math>. |
In addition: | In addition: | ||
− | Note that <math>11n< | + | Note that </math>11n<math> with </math>n = 1<math> may be obtained with </math>a = 6<math> and </math>b = 5<math> as </math>a^2 - b^2 = 36 - 25 = 11$. |
==Sidenote== | ==Sidenote== |
Revision as of 21:11, 20 January 2018
Contents
Problem
The arithmetic mean of two distinct positive integers and is a two-digit integer. The geometric mean of and is obtained by reversing the digits of the arithmetic mean. What is ?
Solution
Answer: (D)
\frac{x + y}{2} = 10 a+b1\le a\le 9 0\le b\le 9\sqrt{xy} = 10 b+a$$ (Error compiling LaTeX. Unknown error_msg)100 a^2 + 20 ab + b^2 = \frac{x^2 + 2xy + y^2}{4}$$ (Error compiling LaTeX. Unknown error_msg)xy = 100b^2 + 20ab + a^2$$ (Error compiling LaTeX. Unknown error_msg)\frac{x^2 + 2xy + y^2}{4} - xy = \frac{x^2 - 2xy + y^2}{4} = \left(\frac{x-y}{2}\right)^2 = 99 a^2 - 99 b^2 = 99(a^2 - b^2)|x-y| = 2\sqrt{99(a^2 - b^2)}(a^2 - b^2)11nna9n = 14n = 1|x-y| = 66n = 4|x-y| = 132a^2 -b^2 = 44(a-b)(a+b) = 44a-b = 124a+b = 442211a+b \le 18a+b = 11a-b = 4ab$.
In addition: Note that$ (Error compiling LaTeX. Unknown error_msg)11nn = 1a = 6b = 5a^2 - b^2 = 36 - 25 = 11$.
Sidenote
It is easy to see that is the only solution. This yields . Their arithmetic mean is and their geometric mean is .
See also
2011 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.