Difference between revisions of "2017 AMC 10B Problems/Problem 24"

(Solution 3)
m (Solution 2)
Line 8: Line 8:
  
 
==Solution 2==
 
==Solution 2==
WLOG, let the centroid of <math>\triangle ABC</math> be <math>G = (-1,-1)</math>. Then, one of the vertices must be the other curve of the hyperbola. WLOG, let <math>A = (1,1)</math>. Then, point <math>B</math> must be the reflection of <math>C</math> across the line <math>y=x</math>, so let <math>B = (a,1/a)</math> and <math>C=(1/a,a)</math>, where <math>a <-1</math>. Because <math>G</math> is the centroid, the average of the <math>x</math>-coordinates of the vertices of the triangle is <math>-1</math>. So we know that <math>a + 1/a+ 1 = -3</math>. Multiplying by <math>a</math> and solving gives us <math>a=-2-\sqrt{3}</math>. So <math>B=(-2-\sqrt{3},-2+\sqrt{3})</math> and <math>C=(-2+\sqrt{3},-2-\sqrt{3})</math>. So <math>BC=2\sqrt{6}</math>, and finding the square of the area gives us <math>\boxed{\textbf{(C) } 108}</math>.
+
WLOG, let the centroid of <math>\triangle ABC</math> be <math>G = (-1,-1)</math>. Then, one of the vertices must be the other curve of the hyperbola. WLOG, let <math>A = (1,1)</math>. Then, point <math>B</math> must be the reflection of <math>C</math> across the line <math>y=x</math>, so let <math>B = (a,\frac{1}{a})</math> and <math>C=(\frac{1}{a},a)</math>, where <math>a <-1</math>. Because <math>G</math> is the centroid, the average of the <math>x</math>-coordinates of the vertices of the triangle is <math>-1</math>. So we know that <math>a + 1/a+ 1 = -3</math>. Multiplying by <math>a</math> and solving gives us <math>a=-2-\sqrt{3}</math>. So <math>B=(-2-\sqrt{3},-2+\sqrt{3})</math> and <math>C=(-2+\sqrt{3},-2-\sqrt{3})</math>. So <math>BC=2\sqrt{6}</math>, and finding the square of the area gives us <math>\boxed{\textbf{(C) } 108}</math>.
  
 
==Solution 3==
 
==Solution 3==

Revision as of 05:07, 24 November 2017

Problem 24

The vertices of an equilateral triangle lie on the hyperbola $xy=1$, and a vertex of this hyperbola is the centroid of the triangle. What is the square of the area of the triangle?

$\textbf{(A)}\ 48\qquad\textbf{(B)}\ 60\qquad\textbf{(C)}\ 108\qquad\textbf{(D)}\ 120\qquad\textbf{(E)}\ 169$

Solution

WLOG, let the centroid of $\triangle ABC$ be $I = (-1,-1)$. The centroid of an equilateral triangle is the same as the circumcenter. It follows that the circumcircle must hit the graph exactly three times. Therefore, $A = (1,1)$, so $AI = BI = CI = 2\sqrt{2}$, so since $\triangle AIB$ is isosceles and $\angle AIB = 120^{\circ}$, then by Law of Cosines, $AB = 2\sqrt{6}$. Therefore, the area of the triangle is $\frac{(2\sqrt{6})^2\sqrt{3}}4 = 6\sqrt{3}$, so the square of the area of the triangle is $\boxed{\textbf{(C) } 108}$.

Solution 2

WLOG, let the centroid of $\triangle ABC$ be $G = (-1,-1)$. Then, one of the vertices must be the other curve of the hyperbola. WLOG, let $A = (1,1)$. Then, point $B$ must be the reflection of $C$ across the line $y=x$, so let $B = (a,\frac{1}{a})$ and $C=(\frac{1}{a},a)$, where $a <-1$. Because $G$ is the centroid, the average of the $x$-coordinates of the vertices of the triangle is $-1$. So we know that $a + 1/a+ 1 = -3$. Multiplying by $a$ and solving gives us $a=-2-\sqrt{3}$. So $B=(-2-\sqrt{3},-2+\sqrt{3})$ and $C=(-2+\sqrt{3},-2-\sqrt{3})$. So $BC=2\sqrt{6}$, and finding the square of the area gives us $\boxed{\textbf{(C) } 108}$.

Solution 3

WLOG, let a vertex $A$ of equilateral triangle $ABC$ be at $(-1,-1)$ on hyperbola $xy=1$.

We are given that the vertex of the hyperbola is the centroid of the triangle. Hence, WLOG, the centroid of the triangle is at $(1,1)$. Mark the centroid to be point $D$.

The length of $AD=\sqrt{{1-(-1)}^2+{(1-(-1)}^2} \implies \sqrt{8} \implies 2\sqrt{2}$.

Now, using the information that $AD$ is $\frac{2}{3}$ the height of equilateral triangle $ABC$(centroid), we find that the height of equilateral triangle $ABC$ is $3\sqrt{2}$

Hence, since the height of triangle $ABC=3\sqrt{2}$, its base is $=2\sqrt{6}$

Using the formula for the area of an equilateral triangle...

$\frac{(2\sqrt{6})^2 \sqrt{3}}{4} \implies \frac{24\sqrt{3}}{4}\implies 6\sqrt{3}$

Hence, the area squared is $=({6\sqrt{3}})^2 \implies 108\implies \boxed{C}$.

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png