Difference between revisions of "2013 AMC 8 Problems/Problem 15"

(Solution)
(Solution)
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
First, we're going to solve for <math>p</math>. Start with <math>3^p+</math>3^4<math>=90</math>. Then, change <math>3^4</math> to <math>81</math>. Subtract <math>81</math> from both sides to get <math>3^p=9</math> and see that <math>p</math> is <math>2</math>. Now, solve for <math>r</math>. Since <math>2^r+44=76</math>, <math>2^r</math> must equal <math>32</math>, so <math>r=5</math>. Now, solve for <math>s</math>. <math>5^3+6^s=1421</math> can be simplified to <math>125+6^s=1421</math> which simplifies further to <math>6^s=1296</math>. Therefore, <math>s=4</math>. <math>prs</math> equals <math>2*5*4</math> which equals <math>40</math>. So, the answer is <math>\boxed{\textbf{(B)}\ 40}</math>.
+
First, we're going to solve for <math>p</math>. Start with <math>3^p+3^4=90</math>. Then, change <math>3^4</math> to <math>81</math>. Subtract <math>81</math> from both sides to get <math>3^p=9</math> and see that <math>p</math> is <math>2</math>. Now, solve for <math>r</math>. Since <math>2^r+44=76</math>, <math>2^r</math> must equal <math>32</math>, so <math>r=5</math>. Now, solve for <math>s</math>. <math>5^3+6^s=1421</math> can be simplified to <math>125+6^s=1421</math> which simplifies further to <math>6^s=1296</math>. Therefore, <math>s=4</math>. <math>prs</math> equals <math>2*5*4</math> which equals <math>40</math>. So, the answer is <math>\boxed{\textbf{(B)}\ 40}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2013|num-b=14|num-a=16}}
 
{{AMC8 box|year=2013|num-b=14|num-a=16}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 22:22, 11 November 2017

Problem

If $3^p + 3^4 = 90$, $2^r + 44 = 76$, and $5^3 + 6^s = 1421$, what is the product of $p$, $r$, and $s$?

$\textbf{(A)}\ 27 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 50 \qquad \textbf{(D)}\ 70 \qquad \textbf{(E)}\ 90$

Solution

First, we're going to solve for $p$. Start with $3^p+3^4=90$. Then, change $3^4$ to $81$. Subtract $81$ from both sides to get $3^p=9$ and see that $p$ is $2$. Now, solve for $r$. Since $2^r+44=76$, $2^r$ must equal $32$, so $r=5$. Now, solve for $s$. $5^3+6^s=1421$ can be simplified to $125+6^s=1421$ which simplifies further to $6^s=1296$. Therefore, $s=4$. $prs$ equals $2*5*4$ which equals $40$. So, the answer is $\boxed{\textbf{(B)}\ 40}$.

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png