Difference between revisions of "2014 AIME II Problems/Problem 11"
Expilncalc (talk | contribs) (→Solution 2) |
|||
Line 1: | Line 1: | ||
==Problem 11== | ==Problem 11== | ||
− | In <math>\triangle RED</math>, <math>\measuredangle DRE=75^{\circ}</math> and <math>\measuredangle RED=45^{\circ}</math>. <math> | + | In <math>\triangle RED</math>, <math>\measuredangle DRE=75^{\circ}</math> and <math>\measuredangle RED=45^{\circ}</math>. <math>RD=1</math>. Let <math>M</math> be the midpoint of segment <math>\overline{RD}</math>. Point <math>C</math> lies on side <math>\overline{ED}</math> such that <math>\overline{RC}\perp\overline{EM}</math>. Extend segment <math>\overline{DE}</math> through <math>E</math> to point <math>A</math> such that <math>CA=AR</math>. Then <math>AE=\frac{a-\sqrt{b}}{c}</math>, where <math>a</math> and <math>c</math> are relatively prime positive integers, and <math>b</math> is a positive integer. Find <math>a+b+c</math>. |
==Solution== | ==Solution== |
Revision as of 16:23, 8 October 2017
Contents
Problem 11
In , and . . Let be the midpoint of segment . Point lies on side such that . Extend segment through to point such that . Then , where and are relatively prime positive integers, and is a positive integer. Find .
Solution
Let be the foot of the perpendicular from to , so . Since triangle is isosceles, is the midpoint of , and . Thus, is a parallelogram and . We can then use coordinates. Let be the foot of altitude and set as the origin. Now we notice special right triangles! In particular, and , so , , and midpoint and the slope of , so the slope of Instead of finding the equation of the line, we use the definition of slope: for every to the left, we go up. Thus, , and , so the answer is .
Solution 2
NOTE: Draw your own picture for this one! It requires some tenacity.
First, we are stuck, right? Nowhere to go. Wait a minute... there's medians and midpoints. Maybe we should draw auxiliary segment . For lack of better term, let's call the length . Meanwhile, because is similar to (angle, side, and side- and ratio), must be 2. Now, notice that is , because of the parallel segments and (also using Midsegment Theorem).
Now we just have to calculate . Using the Law of Sines, or perhaps using altitude , we get , thus , which must be equal to . (That's minus and plus .)
Finally, what is ? It comes out to .
We got the three sides. Now all that is left is using the Law of Cosines.
Taking and using , of course, we find out (after some calculation) that .
See also
2014 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.