Difference between revisions of "2017 AMC 10B Problems/Problem 3"
m |
m (→Solution) |
||
Line 20: | Line 20: | ||
<math>\textbf{(D)}</math> The same logic as above, but when <math>-\frac{1}{2}<y<0</math> this time. | <math>\textbf{(D)}</math> The same logic as above, but when <math>-\frac{1}{2}<y<0</math> this time. | ||
+ | ==See Also== | ||
{{AMC10 box|year=2017|ab=B|num-b=2|num-a=4}} | {{AMC10 box|year=2017|ab=B|num-b=2|num-a=4}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 10:12, 26 July 2017
Problem
Real numbers , , and satisfy the inequalities , , and . Which of the following numbers is necessarily positive?
Solution
Notice that must be positive because . Therefore the answer is .
The other choices:
As grows closer to , decreases and thus becomes less than .
can be as small as possible (), so grows close to as approaches .
For all , , and thus it is always negative.
The same logic as above, but when this time.
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.