Difference between revisions of "2017 AMC 10B Problems/Problem 4"

m (Solution 2)
m (Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
 +
 +
===Solution 1===
 
Rearranging, we find <math>3x+y=-2x+6y</math>, or <math>5x=5y\implies x=y</math>
 
Rearranging, we find <math>3x+y=-2x+6y</math>, or <math>5x=5y\implies x=y</math>
Substituting, we can convert the second equation into <math>\frac{x+3x}{3x-x}=\frac{4x}{2x}=\boxed{\textbf{(D)}\ 2}</math>
+
Substituting, we can convert the second equation into <math>\frac{x+3x}{3x-x}=\frac{4x}{2x}=\boxed{\textbf{(D)}\ 2}</math>.
 +
 
 +
===Solution 2===
 +
Substituting each <math>x</math> and <math>y</math> with <math>1</math>, we see that the given equation holds true, as <math>\frac{3(1)+1}{1-3(1)} = -2</math>. Thus, <math>\frac{x+3y}{3x-y}=\boxed{\textbf{(D)}\ 2}</math>
 +
 
 +
 
 +
 
 +
{{AMC10 box|year=2017|ab=B|num-b=3|num-a=5}}
 +
{{MAA Notice}}

Revision as of 10:10, 26 July 2017

Problem

Supposed that $x$ and $y$ are nonzero real numbers such that $\frac{3x+y}{x-3y}=-2$. What is the value of $\frac{x+3y}{3x-y}$?

$\textbf{(A)}\ -3\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ 3$

Solution

Solution 1

Rearranging, we find $3x+y=-2x+6y$, or $5x=5y\implies x=y$ Substituting, we can convert the second equation into $\frac{x+3x}{3x-x}=\frac{4x}{2x}=\boxed{\textbf{(D)}\ 2}$.

Solution 2

Substituting each $x$ and $y$ with $1$, we see that the given equation holds true, as $\frac{3(1)+1}{1-3(1)} = -2$. Thus, $\frac{x+3y}{3x-y}=\boxed{\textbf{(D)}\ 2}$


2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png