Difference between revisions of "2014 AMC 10B Problems/Problem 16"

(Solution: Added second half of solution, finished)
Line 13: Line 13:
  
 
Adding these up, we get <math>\dfrac{7}{72}</math>, or <math>\boxed{\textbf{(B)}}</math>.
 
Adding these up, we get <math>\dfrac{7}{72}</math>, or <math>\boxed{\textbf{(B)}}</math>.
 +
 +
==Solution 2==
 +
 +
Note that there are two cases for this problem
 +
 +
Case 1: Exactly three of the dices show the same value.
 +
 +
There are <math>5</math> values that the remaining die can take on, and there are <math>\binom{4}{3}=4</math> ways to choose the die. There are <math>6</math> ways that this can happen. Hence, <math>6\cdot 4\cdot5=120</math> ways.
 +
 +
Case 2: Exactly four of the dices show the same value.
 +
 +
This can happen in <math>6</math> ways.
 +
 +
Hence, the probability is <math>\frac{120+6}{6^{4}}=\frac{21}{216}\implies \frac{7}{72}\implies \boxed{\textbf{(B)}}</math>
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2014|ab=B|num-b=15|num-a=17}}
 
{{AMC10 box|year=2014|ab=B|num-b=15|num-a=17}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 13:27, 12 June 2017

Problem

Four fair six-sided dice are rolled. What is the probability that at least three of the four dice show the same value?

$\textbf {(A) } \frac{1}{36} \qquad \textbf {(B) } \frac{7}{72} \qquad \textbf {(C) } \frac{1}{9} \qquad \textbf {(D) } \frac{5}{36} \qquad \textbf {(E) } \frac{1}{6}$

Solution

We split this problem into 2 cases.

First, we calculate the probability that all four are the same. After the first dice, all the number must be equal to that roll, giving a probability of $1 * \dfrac{1}{6} * \dfrac{1}{6} * \dfrac{1}{6} = \dfrac{1}{216}$.

Second, we calculate the probability that three are the same and one is different. After the first dice, the next two must be equal and the third different. There are 4 orders to roll the different dice, giving $4 * 1 * \dfrac{1}{6} * \dfrac{1}{6} * \dfrac{5}{6} = \dfrac{5}{54}$.

Adding these up, we get $\dfrac{7}{72}$, or $\boxed{\textbf{(B)}}$.

Solution 2

Note that there are two cases for this problem

Case 1: Exactly three of the dices show the same value.

There are $5$ values that the remaining die can take on, and there are $\binom{4}{3}=4$ ways to choose the die. There are $6$ ways that this can happen. Hence, $6\cdot 4\cdot5=120$ ways.

Case 2: Exactly four of the dices show the same value.

This can happen in $6$ ways.

Hence, the probability is $\frac{120+6}{6^{4}}=\frac{21}{216}\implies \frac{7}{72}\implies \boxed{\textbf{(B)}}$

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png