Difference between revisions of "2015 AIME I Problems/Problem 11"

m
m
Line 3: Line 3:
  
 
==Solution 1 (No Trig)==
 
==Solution 1 (No Trig)==
Let <math>AB=x</math> and the foot of the altitude from <math>A</math> to <math>BC</math> be point <math>E</math> and <math>BE=y</math>. Since ABC is isosceles, <math>I</math> is on <math>AE</math>. By pythagorean theorem, <math>AE=\sqrt{x^2-y^2}</math>. Let <math>IE=a</math> and <math>IA=b</math>. By angle bisector theorem, <math>\frac{y}{a}=\frac{x}{b}</math>. Also, <math>a+b=\sqrt{x^2-y^2}</math>. Solving for <math>a</math>, we get <math>a=\frac{\sqrt{x^2-y^2}}{1+\frac{x}{y}}</math>. Then, using pythagorean on <math>BEI</math> we have <math>y^2+\left(\frac{\sqrt{x^2-y^2}}{1+\frac{x}{y}}\right)^2=8^2=64</math>. Simplifying, we have <math>y^2+y^2\frac{x^2-y^2}{(x+y)^2}=64</math>. Factoring out the <math>y^2</math>, we have <math>y^2\left(1+\frac{x^2-y^2}{(x+y)^2}\right)=64</math>. Adding 1 to the fraction and simplifying, we have <math>\frac{y^2x(x+y)}{(x+y)^2}=32</math>. Crossing out the <math>x+y</math>, and solving for <math>x</math> yields <math>32y = x(y^2-32)</math>. Then, we continue as solution 2 does.
+
Let <math>AB=x</math> and the foot of the altitude from <math>A</math> to <math>BC</math> be point <math>E</math> and <math>BE=y</math>. Since ABC is isosceles, <math>I</math> is on <math>AE</math>. By pythagorean theorem, <math>AE=\sqrt{x^2-y^2}</math>. Let <math>IE=a</math> and <math>IA=b</math>. By angle bisector theorem, <math>\frac{y}{a}=\frac{x}{b}</math>. Also, <math>a+b=\sqrt{x^2-y^2}</math>. Solving for <math>a</math>, we get <math>a=\frac{\sqrt{x^2-y^2}}{1+\frac{x}{y}}</math>. Then, using pythagorean on <math>BEI</math> we have <math>y^2+\left(\frac{\sqrt{x^2-y^2}}{1+\frac{x}{y}}\right)^2=8^2=64</math>. Simplifying, we have <math>y^2+y^2\frac{x^2-y^2}{(x+y)^2}=64</math>. Factoring out the <math>y^2</math>, we have <math>y^2\left(1+\frac{x^2-y^2}{(x+y)^2}\right)=64</math>. Adding 1 to the fraction and simplifying, we have <math>\frac{y^2x(x+y)}{(x+y)^2}=32</math>. Crossing out the <math>x+y</math>, and solving for <math>x</math> yields <math>32y = x(y^2-32)</math>. Then, we continue as Solution 2 does.
  
  

Revision as of 11:42, 8 June 2017

Problem

Triangle $ABC$ has positive integer side lengths with $AB=AC$. Let $I$ be the intersection of the bisectors of $\angle B$ and $\angle C$. Suppose $BI=8$. Find the smallest possible perimeter of $\triangle ABC$.

Solution 1 (No Trig)

Let $AB=x$ and the foot of the altitude from $A$ to $BC$ be point $E$ and $BE=y$. Since ABC is isosceles, $I$ is on $AE$. By pythagorean theorem, $AE=\sqrt{x^2-y^2}$. Let $IE=a$ and $IA=b$. By angle bisector theorem, $\frac{y}{a}=\frac{x}{b}$. Also, $a+b=\sqrt{x^2-y^2}$. Solving for $a$, we get $a=\frac{\sqrt{x^2-y^2}}{1+\frac{x}{y}}$. Then, using pythagorean on $BEI$ we have $y^2+\left(\frac{\sqrt{x^2-y^2}}{1+\frac{x}{y}}\right)^2=8^2=64$. Simplifying, we have $y^2+y^2\frac{x^2-y^2}{(x+y)^2}=64$. Factoring out the $y^2$, we have $y^2\left(1+\frac{x^2-y^2}{(x+y)^2}\right)=64$. Adding 1 to the fraction and simplifying, we have $\frac{y^2x(x+y)}{(x+y)^2}=32$. Crossing out the $x+y$, and solving for $x$ yields $32y = x(y^2-32)$. Then, we continue as Solution 2 does.


Solution 2 (Trig)

Let $D$ be the midpoint of $\overline{BC}$. Then by SAS Congruence, $\triangle ABD \cong \triangle ACD$, so $\angle ADB = \angle ADC = 90^o$.

Now let $BD=y$, $AB=x$, and $\angle IBD = \dfrac{\angle ABD}{2} = \theta$.

Then $\mathrm{cos}{(\theta)} = \dfrac{y}{8}$

and $\mathrm{cos}{(2\theta)} = \dfrac{y}{x} = 2\mathrm{cos^2}{(\theta)} - 1 = \dfrac{y^2-32}{32}$.

Cross-multiplying yields $32y = x(y^2-32)$.

Since $x,y>0$, $y^2-32$ must be positive, so $y > 5.5$.

Additionally, since $\triangle IBD$ has hypotenuse $\overline{IB}$ of length $8$, $BD=y < 8$.

Therefore, given that $BC=2y$ is an integer, the only possible values for $y$ are $6$, $6.5$, $7$, and $7.5$.

However, only one of these values, $y=6$, yields an integral value for $AB=x$, so we conclude that $y=6$ and $x=\dfrac{32(6)}{(6)^2-32}=48$.

Thus the perimeter of $\triangle ABC$ must be $2(x+y) = \boxed{108}$.

See Also

2015 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png