Difference between revisions of "2017 USAMO Problems/Problem 5"
(→Problem) |
(→Solution 1) |
||
Line 2: | Line 2: | ||
Let <math>\mathbf{Z}</math> denote the set of all integers. Find all real numbers <math>c > 0</math> such that there exists a labeling of the lattice points <math>( x, y ) \in \mathbf{Z}^2</math> with positive integers for which: only finitely many distinct labels occur, and for each label <math>i</math>, the distance between any two points labeled <math>i</math> is at least <math>c^i</math>. | Let <math>\mathbf{Z}</math> denote the set of all integers. Find all real numbers <math>c > 0</math> such that there exists a labeling of the lattice points <math>( x, y ) \in \mathbf{Z}^2</math> with positive integers for which: only finitely many distinct labels occur, and for each label <math>i</math>, the distance between any two points labeled <math>i</math> is at least <math>c^i</math>. | ||
− | ==Solution | + | ==Solution (INCOMPLETE)== |
+ | For <math>c\le 1,</math> we can label every lattice point <math>1.</math> For <math>c\le 2^{1/4},</math> we can make a "checkerboard" labeling, i.e. label <math>(x, y)</math> with <math>1</math> if <math>x+y</math> is even and <math>2</math> if <math>x+y</math> is odd. One can easily verify that these labelings satisfy the required condition. Therefore, a labeling as desired exists for all <math>0\lt c\le 2^{1/4}.</math> |
Revision as of 01:34, 3 May 2017
Problem
Let denote the set of all integers. Find all real numbers such that there exists a labeling of the lattice points with positive integers for which: only finitely many distinct labels occur, and for each label , the distance between any two points labeled is at least .
Solution (INCOMPLETE)
For we can label every lattice point For we can make a "checkerboard" labeling, i.e. label with if is even and if is odd. One can easily verify that these labelings satisfy the required condition. Therefore, a labeling as desired exists for all $0\lt c\le 2^{1/4}.$ (Error compiling LaTeX. Unknown error_msg)