Difference between revisions of "2017 AIME I Problems/Problem 10"
m (→Solution) |
(→Solution) |
||
Line 6: | Line 6: | ||
(This solution's quality may be very poor. If one feels that the solution is inadequate, one may choose to improve it.) | (This solution's quality may be very poor. If one feels that the solution is inadequate, one may choose to improve it.) | ||
− | Let us write <math>\frac{z_3 - z_1}{ | + | Let us write <math>\frac{z_3 - z_1}{z_2 - z_1}</math> be some imaginary number with form <math>r_1 (\cos \theta_1 + i \sin \theta_1).</math> Similarly, we can write <math>\frac{z-z_2}{z-z_3}</math> as some <math>r_2 (\cos \theta_2 + i \sin \theta_2).</math> |
The product must be real, so we have that <math>r_1 r_2 (\cos \theta_1 + i \sin \theta_1) (\cos \theta_2 + i \sin \theta_2)</math> is real. Of this, <math>r_1 r_2</math> must be real, so the imaginary parts only arise from the second part of the product. Thus we have | The product must be real, so we have that <math>r_1 r_2 (\cos \theta_1 + i \sin \theta_1) (\cos \theta_2 + i \sin \theta_2)</math> is real. Of this, <math>r_1 r_2</math> must be real, so the imaginary parts only arise from the second part of the product. Thus we have | ||
Line 15: | Line 15: | ||
To maximize the imaginary part of <math>z,</math> it must lie at the top of the circumcircle, which means the real part of <math>z</math> is the same as the real part of the circumcenter. The center of the circumcircle can be found in various ways, (such as computing the intersection of the perpendicular bisectors of the sides) and when computed gives us that the real part of the circumcenter is <math>56,</math> so the real part of <math>z</math> is <math>56,</math> and thus our answer is <math>\boxed{056}.</math> | To maximize the imaginary part of <math>z,</math> it must lie at the top of the circumcircle, which means the real part of <math>z</math> is the same as the real part of the circumcenter. The center of the circumcircle can be found in various ways, (such as computing the intersection of the perpendicular bisectors of the sides) and when computed gives us that the real part of the circumcenter is <math>56,</math> so the real part of <math>z</math> is <math>56,</math> and thus our answer is <math>\boxed{056}.</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | Algebra Bash | ||
+ | |||
+ | First we calculate <math>\frac{z_3 - z_1}{z_3 - z_2}</math> , which becomes <math>\frac{15i-4}{11}</math>. | ||
+ | |||
+ | Next, we define <math>z</math> to be <math>a-bi</math> for some real numbers <math>a</math> and <math>b</math>. Then, <math>\frac {z-z_2}{z-z_3}</math> can be written as <math>\frac{(a-18)+(b-39)i}{(a-78)+(b-99)i}. Multiplying both the numerator and denominator by the conjugate of the denominator, we get: | ||
+ | |||
+ | </math>/frac {[(a-18)(a-78)+(b-39)(b-99)]+[(a-78)(b-39)-(a-18)(b-99)]i}{(a-78)^2+(b-99)^2}<math> | ||
+ | |||
+ | In order for the product to be a real number, since both denominators are real numbers, we must have the numerator of </math>\frac {z-z_2}{z-z_3}<math> be a multiple of the conjugate of </math>15i-4<math>, namely </math>-15i-4<math> So, we have </math>(a-18)(a-78)+(b-39)(b-99) = -4k<math> and </math>(a-78)(b-39)-(a-18)(b-99) = -15k<math> for some real number </math>k<math>. | ||
+ | |||
+ | Then, we get:</math>(a-18)(a-78)+(b-39)(b-99) = \frac{4}{15}(a-78)(b-39)-(a-18)(b-99)<math> | ||
+ | |||
+ | Expanding both sides and combining like terms, we get: | ||
+ | |||
+ | </math>a^2 - 112a +b^2 - 112b + \frac{1989}{5} = 0<math> | ||
+ | |||
+ | which can be rewritten as: | ||
+ | |||
+ | </math>(a-56)^2 + (b-56)^2 = \frac{29371}{5}<math> | ||
+ | |||
+ | Now, common sense tells us that to maximize </math>b<math>, we would need to maximize </math>(b-56)^2<math>. Therefore, we must set </math>(a-56)^2<math> to its lowest value, namely 0. Therefore, </math>a<math> must be </math>\boxed{056}.$ | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2017|n=I|num-b=9|num-a=11}} | {{AIME box|year=2017|n=I|num-b=9|num-a=11}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 14:50, 9 March 2017
Contents
Problem 10
Let and where Let be the unique complex number with the properties that is a real number and the imaginary part of is the greatest possible. Find the real part of .
Solution
(This solution's quality may be very poor. If one feels that the solution is inadequate, one may choose to improve it.)
Let us write be some imaginary number with form Similarly, we can write as some
The product must be real, so we have that is real. Of this, must be real, so the imaginary parts only arise from the second part of the product. Thus we have
is real. The imaginary part of this is which we recognize as This is only when is some multiple of In this problem, this implies and must form a cyclic quadrilateral, so the possibilities of lie on the circumcircle of and
To maximize the imaginary part of it must lie at the top of the circumcircle, which means the real part of is the same as the real part of the circumcenter. The center of the circumcircle can be found in various ways, (such as computing the intersection of the perpendicular bisectors of the sides) and when computed gives us that the real part of the circumcenter is so the real part of is and thus our answer is
Solution 2
Algebra Bash
First we calculate , which becomes .
Next, we define to be for some real numbers and . Then, can be written as /frac {[(a-18)(a-78)+(b-39)(b-99)]+[(a-78)(b-39)-(a-18)(b-99)]i}{(a-78)^2+(b-99)^2}\frac {z-z_2}{z-z_3}15i-4-15i-4(a-18)(a-78)+(b-39)(b-99) = -4k(a-78)(b-39)-(a-18)(b-99) = -15kk$.
Then, we get:$ (Error compiling LaTeX. Unknown error_msg)(a-18)(a-78)+(b-39)(b-99) = \frac{4}{15}(a-78)(b-39)-(a-18)(b-99)a^2 - 112a +b^2 - 112b + \frac{1989}{5} = 0(a-56)^2 + (b-56)^2 = \frac{29371}{5}b(b-56)^2(a-56)^2a\boxed{056}.$
See Also
2017 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.