Difference between revisions of "2017 AMC 12B Problems/Problem 18"
m |
|||
Line 3: | Line 3: | ||
<math>\textbf{(A)}\ \frac{120}{37}\qquad\textbf{(B)}\ \frac{140}{39}\qquad\textbf{(C)}\ \frac{145}{39}\qquad\textbf{(D)}\ \frac{140}{37}\qquad\textbf{(E)}\ \frac{120}{31}</math> | <math>\textbf{(A)}\ \frac{120}{37}\qquad\textbf{(B)}\ \frac{140}{39}\qquad\textbf{(C)}\ \frac{145}{39}\qquad\textbf{(D)}\ \frac{140}{37}\qquad\textbf{(E)}\ \frac{120}{31}</math> | ||
+ | |||
==Solution 1== | ==Solution 1== | ||
Line 46: | Line 47: | ||
− | ==Solution 2: Similar triangles== | + | ==Solution 2: Similar triangles with Pythagorean== |
<math>AB</math> is the diameter of the circle, so <math>\angle ACB</math> is a right angle, and therefore by AA similarity, <math>\triangle ACB \sim \triangle ADE</math>. | <math>AB</math> is the diameter of the circle, so <math>\angle ACB</math> is a right angle, and therefore by AA similarity, <math>\triangle ACB \sim \triangle ADE</math>. | ||
− | Because of this, <math>\frac{AC}{AD} = \frac{AB}{AE} \Longrightarrow \frac{AC}{2+2+3} = \frac{ | + | Because of this, <math>\frac{AC}{AD} = \frac{AB}{AE} \Longrightarrow \frac{AC}{2+2+3} = \frac{2+2}{\sqrt{7^2 + 5^2}}</math>, so <math>AC = \frac{28}{\sqrt{74}}</math>. |
− | Likewise, <math>\frac{ | + | Likewise, <math>\frac{BC}{ED} = \frac{AB}{AE} \Longrightarrow \frac{CB}{5} = \frac{4}{\sqrt{74}}</math>, so <math>CB = \frac{20}{\sqrt{74}}</math>. |
Thus the area of <math>\triangle ABC = \frac{1}{2} \cdot \frac{28}{\sqrt{74}} \cdot \frac{20}{\sqrt{74}} = \boxed{\textbf{(D)}\ \frac{140}{37}}</math>. | Thus the area of <math>\triangle ABC = \frac{1}{2} \cdot \frac{28}{\sqrt{74}} \cdot \frac{20}{\sqrt{74}} = \boxed{\textbf{(D)}\ \frac{140}{37}}</math>. | ||
+ | ==Solution 3: Similar triangles without Pythagorean== | ||
Or, use similar triangles all the way, dispense with Pythagorean, and go for minimal calculation: | Or, use similar triangles all the way, dispense with Pythagorean, and go for minimal calculation: | ||
− | Draw BF// | + | Draw <math>BF \parallel ED</math> with <math>F</math> on <math>AE</math>. <math>BF=5\times\frac{4}{7}=\frac{20}{7}</math>. |
− | [ABF]= | + | |
− | AC:CB:CF=49:35:25. (7/ | + | <math>[\triangle ABF]=\frac{1}{2} \times 4 \times \frac{20}{7}=\frac{40}{7}</math>. |
− | [ABC]=49 | + | |
+ | <math>AC:CB:CF=49:35:25</math>. (<math>7:5</math> ratio applied twice) | ||
+ | |||
+ | <math>[\triangle ABC]=\frac{49}{49+25}[\triangle ABF]=\boxed{\textbf{(D)}\ \frac{140}{37}}</math>. | ||
+ | |||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2017|ab=B|num-b=17|num-a=19}} | {{AMC12 box|year=2017|ab=B|num-b=17|num-a=19}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:46, 19 February 2017
Contents
Problem
The diameter of a circle of radius is extended to a point outside the circle so that . Point is chosen so that and line is perpendicular to line . Segment intersects the circle at a point between and . What is the area of ?
Solution 1
Let be the center of the circle. Note that . However, by Power of a Point, , so . Now . Since .
Solution 2: Similar triangles with Pythagorean
is the diameter of the circle, so is a right angle, and therefore by AA similarity, .
Because of this, , so .
Likewise, , so .
Thus the area of .
Solution 3: Similar triangles without Pythagorean
Or, use similar triangles all the way, dispense with Pythagorean, and go for minimal calculation:
Draw with on . .
.
. ( ratio applied twice)
.
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.