Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 12"

 
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
In quadrilateral <math>\displaystyle ABCD,</math> <math>\displaystyle m \angle DAC= m\angle DBC </math> and <math>\displaystyle \dfrac{\text{area} \triangle ADB}{\text{area} \triangle ABC}=\dfrac12.</math> If <math>\displaystyle AD=4,</math> <math>\displaystyle BC=6</math>, <math>\displaystyle BO=1,</math> and the area of <math>\displaystyle ABCD</math> is <math>\displaystyle \dfrac{a\sqrt{b}}{c},</math> where <math>\displaystyle a,b,c</math> are relatively prime positive integers, find <math>\displaystyle a+b+c.</math>
+
In quadrilateral <math>\displaystyle ABCD,</math> <math>\displaystyle m \angle DAC= m\angle DBC </math> and <math>\displaystyle \frac{[ADB]}{[ABC]}=\frac12.</math> If <math>\displaystyle AD=4,</math> <math>\displaystyle BC=6</math>, <math>\displaystyle BO=1,</math> and the area of <math>\displaystyle ABCD</math> is <math>\displaystyle \frac{a\sqrt{b}}{c},</math> where <math>\displaystyle a,b,c</math> are relatively prime positive integers, find <math>\displaystyle a+b+c.</math>
  
 +
Note*: <math>\displaystyle[ABC]</math> and <math>\displaystyle[ADB]</math> refer to the areas of triangles <math>\displaystyle ABC</math> and <math>\displaystyle ADB.</math>
  
 
== Problem Source ==
 
== Problem Source ==
 
AoPS users 4everwise and Altheman collaborated to create this problem.
 
AoPS users 4everwise and Altheman collaborated to create this problem.

Revision as of 18:22, 24 July 2006

Problem

In quadrilateral $\displaystyle ABCD,$ $\displaystyle m \angle DAC= m\angle DBC$ and $\displaystyle \frac{[ADB]}{[ABC]}=\frac12.$ If $\displaystyle AD=4,$ $\displaystyle BC=6$, $\displaystyle BO=1,$ and the area of $\displaystyle ABCD$ is $\displaystyle \frac{a\sqrt{b}}{c},$ where $\displaystyle a,b,c$ are relatively prime positive integers, find $\displaystyle a+b+c.$

Note*: $\displaystyle[ABC]$ and $\displaystyle[ADB]$ refer to the areas of triangles $\displaystyle ABC$ and $\displaystyle ADB.$

Problem Source

AoPS users 4everwise and Altheman collaborated to create this problem.