Difference between revisions of "2017 AMC 10B Problems/Problem 9"
Ishankhare (talk | contribs) (Created page with "==Problem== Placeholder ==Solution== Placeholder ==See Also== {{AMC10 box|year=2017|ab=B|num-b=8|num-a=10}} {{MAA Notice}}") |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | + | A radio program has a quiz consisting of <math>3</math> multiple-choice questions, each with <math>3</math> choices. A contestant wins if he or she gets <math>2</math> or more of the questions right. The contestant answers randomly to each question. What is the probability of winning? | |
+ | |||
+ | <math>\textbf{(A)}\ \frac{1}{27}\qquad\textbf{(B)}\ \frac{1}{9}\qquad\textbf{(C)}\ \frac{2}{9}\qquad\textbf{(D)}\ \frac{7}{27}\qquad\textbf{(E)}\ \frac{1}{2}</math> | ||
==Solution== | ==Solution== |
Revision as of 12:36, 16 February 2017
Problem
A radio program has a quiz consisting of multiple-choice questions, each with choices. A contestant wins if he or she gets or more of the questions right. The contestant answers randomly to each question. What is the probability of winning?
Solution
Placeholder
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.