Difference between revisions of "Mock AIME 1 2006-2007 Problems/Problem 2"

 
Line 1: Line 1:
 
2. Let <math>\star (x)</math> be the sum of the digits of a positive integer <math>x</math>. <math>\mathcal{S}</math> is the set of positive integers such that for all elements <math>n</math> in <math>\mathcal{S}</math>, we have that <math>\star (n)=12</math> and <math>0\le n< 10^{7}</math>. If <math>m</math> is the number of elements in <math>\mathcal{S}</math>, compute <math>\star(m)</math>.
 
2. Let <math>\star (x)</math> be the sum of the digits of a positive integer <math>x</math>. <math>\mathcal{S}</math> is the set of positive integers such that for all elements <math>n</math> in <math>\mathcal{S}</math>, we have that <math>\star (n)=12</math> and <math>0\le n< 10^{7}</math>. If <math>m</math> is the number of elements in <math>\mathcal{S}</math>, compute <math>\star(m)</math>.
 +
 +
[[Mock AIME 1 2006-2007]]

Revision as of 14:56, 24 July 2006

2. Let $\star (x)$ be the sum of the digits of a positive integer $x$. $\mathcal{S}$ is the set of positive integers such that for all elements $n$ in $\mathcal{S}$, we have that $\star (n)=12$ and $0\le n< 10^{7}$. If $m$ is the number of elements in $\mathcal{S}$, compute $\star(m)$.

Mock AIME 1 2006-2007