Difference between revisions of "2017 AMC 10A Problems/Problem 24"
(→Solution) |
m (→Solution) |
||
Line 20: | Line 20: | ||
1-ar&=b\\ | 1-ar&=b\\ | ||
10-r&=100\\ | 10-r&=100\\ | ||
− | -10r&=c\\ | + | -10r&=c.\\ |
+ | \end{align*}</cmath> | ||
+ | |||
+ | Let's solve for <math>a,b,c,</math> and <math>r</math>. Since <math>10-r=100</math>, <math>r=-90</math>, so <math>c=(-10)(-90)=900</math>. Since <math>a-r=1</math>, <math>a=-89</math>, and <math>b=1-ar=-8009</math>. Thus, we know that | ||
+ | |||
+ | <cmath>f(x)=x^4+x^3-8009x^2+100x+900.</cmath> | ||
+ | |||
+ | Taking <math>f(1)</math>, we find that | ||
+ | |||
+ | <cmath>\begin{align*} | ||
+ | f(1)&=1^4+1^3-8009(1)^2+100(1)+900\\ | ||
+ | &=1+1-8009+100+900\\ | ||
+ | &=\boxed{\bold{(C)\text{ }}\text{-}7007}.\\ | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
Revision as of 16:39, 8 February 2017
Problem
For certain real numbers , , and , the polynomial has three distinct roots, and each root of is also a root of the polynomial What is ?
Solution
must have four roots, three of which are roots of . Using the fact that every polynomial has a unique factorization into its roots, and since the leading coefficient of and are the same, we know that
where is the fourth root of . Substituting and expanding, we find that
Comparing coefficients with , we see that
Let's solve for and . Since , , so . Since , , and . Thus, we know that
Taking , we find that
See Also
2017 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.