Difference between revisions of "2011 AMC 10B Problems/Problem 18"
(→Problem) |
Firemage359 (talk | contribs) (→Solution) |
||
Line 37: | Line 37: | ||
</center> | </center> | ||
− | It is given that <math>\angle AMD \ | + | It is given that <math>\angle AMD \sim \angle CMD</math>. Since <math>\angle AMD</math> and <math>\angle CDM</math> are [[alternate interior angles]] and <math>\overline{AB} \parallel \overline{DC}</math>, <math>\angle AMD \cong \angle CDM \longrightarrow \angle CMD \cong \angle CDM</math>. Use the [[Base Angle Theorem]] to show <math>\overline{DC} \cong \overline{MC}</math>. We know that <math>ABCD</math> is a [[rectangle]], so it follows that <math>\overline{MC} = 6</math>. We notice that <math>\triangle BMC</math> is a <math>30-60-90</math> triangle, and <math>\angle BMC = 30^{\circ}</math>. If we let <math>x</math> be the measure of <math>\angle AMD,</math> then |
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
2x + 30 &= 180\\ | 2x + 30 &= 180\\ |
Revision as of 13:13, 5 February 2017
Problem
Rectangle has
and
. Point
is chosen on side
so that
. What is the degree measure of
?
Solution
![[asy] unitsize(10mm); defaultpen(linewidth(.5pt)+fontsize(10pt)); dotfactor=3; pair A=(0,3), B=(6,3), C=(6,0), D=(0,0); pair M=(0.80385,3); draw(A--B--C--D--cycle); draw(M--C); draw(M--D); draw(anglemark(A,M,D)); draw(anglemark(D,M,C)); draw(anglemark(C,D,M)); pair[] ps={A,B,C,D,M}; dot(ps); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$M$",M,N); label("$6$",midpoint(C--M),SW); label("$6$",midpoint(A--B),N); label("$3$",midpoint(B--C),E); [/asy]](http://latex.artofproblemsolving.com/6/e/5/6e52470a180b9bf804714a44c042322ee1ffdadd.png)
It is given that . Since
and
are alternate interior angles and
,
. Use the Base Angle Theorem to show
. We know that
is a rectangle, so it follows that
. We notice that
is a
triangle, and
. If we let
be the measure of
then
See Also
2011 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.