Difference between revisions of "1977 AHSME Problems/Problem 4"
(Created page with "==Solution== Solution by e_power_pi_times_i Because <math>\measuredangle A=80^\circ</math>, <math>\measuredangle B=\measuredangle C=50^\circ</math>. Then, because triangles <...") |
(→Solution) |
||
Line 1: | Line 1: | ||
+ | == Problem 4 == | ||
+ | |||
+ | <asy> | ||
+ | size(130); | ||
+ | pair A = (2, 2.4), C = (0, 0), B = (4.3, 0), | ||
+ | E = 0.7*A, F = 0.57*A + 0.43*B, D = (2.4, 0); | ||
+ | draw(A--B--C--cycle); | ||
+ | draw(E--D--F); | ||
+ | label("$A$", A, N); | ||
+ | label("$B$", B, E); | ||
+ | label("$C$", C, W); | ||
+ | label("$D$", D, S); | ||
+ | label("$E$", E, NW); | ||
+ | label("$F$", F, NE); | ||
+ | //Credit to MSTang for the diagram | ||
+ | </asy> | ||
+ | |||
+ | In triangle <math>ABC, AB=AC</math> and <math>\measuredangle A=80^\circ</math>. If points <math>D, E</math>, and <math>F</math> lie on sides <math>BC, AC</math> and <math>AB</math>, respectively, and <math>CE=CD</math> and <math>BF=BD</math>, then <math>\measuredangle EDF</math> equals | ||
+ | |||
+ | <math>\textbf{(A) }30^\circ\qquad | ||
+ | \textbf{(B) }40^\circ\qquad | ||
+ | \textbf{(C) }50^\circ\qquad | ||
+ | \textbf{(D) }65^\circ\qquad | ||
+ | \textbf{(E) }\text{none of these} </math> | ||
+ | |||
+ | |||
==Solution== | ==Solution== | ||
Solution by e_power_pi_times_i | Solution by e_power_pi_times_i | ||
Because <math>\measuredangle A=80^\circ</math>, <math>\measuredangle B=\measuredangle C=50^\circ</math>. Then, because triangles <math>CDE</math> and <math>BDF</math> are isosceles, <math>\measuredangle CDE=\measuredangle BDF=65^\circ</math>. <math>\measuredangle EDF=180^\circ - 2(65^\circ)=\textbf{(C) }50^\circ</math> | Because <math>\measuredangle A=80^\circ</math>, <math>\measuredangle B=\measuredangle C=50^\circ</math>. Then, because triangles <math>CDE</math> and <math>BDF</math> are isosceles, <math>\measuredangle CDE=\measuredangle BDF=65^\circ</math>. <math>\measuredangle EDF=180^\circ - 2(65^\circ)=\textbf{(C) }50^\circ</math> |
Latest revision as of 11:26, 21 November 2016
Problem 4
In triangle and . If points , and lie on sides and , respectively, and and , then equals
Solution
Solution by e_power_pi_times_i
Because , . Then, because triangles and are isosceles, .