Difference between revisions of "PaC on Divisibility Rules"

(Redirected page to Divisibility rules)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{delete|Is unnecessary duplicate of [[Divisibility rules]]}}
+
#REDIRECT[[Divisibility rules]]
=== 2: Last Digit Must Be Even ===
 
 
 
Let ABCDEF be a 6-digit number.  Note the value of "ABCDEF" is:
 
 
 
<math>100000A + 10000B + 1000C + 100D + 10E + F</math>
 
 
 
OR <math>2(50000A + 5000B + 500C + 50D + 5E) + F</math>
 
 
 
If F is divisible by 2 (i.e. is 2, 4, 6, 8, or 0), then so is the number "ABCDEF"
 
 
 
=== 3: Three Divides The Sum Of The Digits ===
 
 
 
Let ABCDEF be a 6-digit number.  Note the value of "ABCDEF" is:
 
 
 
<math>100000A + 10000B + 1000C + 100D + 10E + F</math>
 
 
 
OR <math>99999A + 9999B + 999C + 99D + 9E + A + B + C + D + E + F</math>
 
 
 
OR <math>3(33333A + 3333B + 333C + 33D + 3E) + A + B + C + D + E + F</math>
 
 
 
If A + B + C + D + E + F is divisible by 3, then so is ABCDEF.
 
 
 
=== 4: Last TWO Digits Must Be Divisible by 4 ===
 
 
 
Let ABCDEF be a 6-digit number.  Note the value of "ABCDEF" is:
 
 
 
<math>100000A + 10000B + 1000C + 100D + 10E + F</math>
 
 
 
OR <math>4(25000A + 2500B + 250C + 25D) + 10E + F</math>
 
 
 
If "EF" is divisible by 4, then so is the number "ABCDEF"
 
 
 
=== 5: Last Digit Must Be 0 or 5 ===
 
 
 
Let ABCDEF be a 6-digit number.  Note the value of "ABCDEF" is:
 
 
 
<math>100000A + 10000B + 1000C + 100D + 10E + F</math>
 
 
 
OR <math>5(20000A + 2000B + 200C + 20D + 2E) + F</math>
 
 
 
If F is divisible by 5 (i.e. is 0 or 5), then so is the number "ABCDEF"
 
 
 
=== 8: Last THREE Digits Must Be Divisible by 8 ===
 
 
 
Let ABCDEF be a 6-digit number.  Note the value of "ABCDEF" is:
 
 
 
<math>100000A + 10000B + 1000C + 100D + 10E + F</math>
 
 
 
OR <math>8(12500A + 1250B + 125C) + 100D + 10E + F</math>
 
 
 
If "DEF" is divisible by 8, then so is the number "ABCDEF"
 
 
 
=== 9: Three Divides The Sum Of The Digits ===
 
 
 
Let ABCDEF be a 6-digit number.  Note the value of "ABCDEF" is:
 
 
 
<math>100000A + 10000B + 1000C + 100D + 10E + F</math>
 
 
 
OR <math>99999A + 9999B + 999C + 99D + 9E + A + B + C + D + E + F</math>
 
 
 
OR <math>9(11111A + 1111B + 111C + 11D + E) + A + B + C + D + E + F</math>
 
 
 
If A + B + C + D + E + F is divisible by 9, then so is ABCDEF.
 

Latest revision as of 12:21, 2 July 2016

Redirect to: