Difference between revisions of "1966 AHSME Problems/Problem 3"
(One intermediate revision by the same user not shown) | |||
Line 15: | Line 15: | ||
==See Also== | ==See Also== | ||
− | {{AHSME box|year=1966|num-b=2|num-a= | + | {{AHSME box|year=1966|num-b=2|num-a=4}} |
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 00:27, 26 June 2016
Problem
If the arithmetic mean of two numbers is and their geometric mean is , then an equation with the given two numbers as roots is:
Solution
Let the numbers be and .
.
.
The monic quadratic with roots and is . Therefore, an equation with and as roots is
See Also
1966 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.